Technik \& Verarbeitung 1/16
Klammertechnik im Holz- und Trockenbau

Technik \& Verarbeitung 1/16

Klammertechnik im Holzund Trockenbau

Im Zuge der vorschreitenden Entwicklung im Holz- und Trockenbau, gerade unter dem Aspekt der Wirtschaftlichkeit, werden zunehmend rationelle Befestigungsmethoden verlangt. Im Bereich Holz- und Trockenbau haben sich in den letzten Jahren Techniken für das Klammern und Nageln mit Druckluftapparaten in verschiedenen Anwendungsbereichen durchgesetzt. Bezogen auf eine rationelle Befestigung von Plattenwerkstoffen auf unterschiedlichen Untergründen werden vor allem Klammern verwendet. Besonders im Holzbau ist die Klammertechnik, sowohl in der Vorfertigung von Elementen als auch auf der Baustelle, nicht mehr wegzudenken.

Unsere Dokumentation „Technik \& Verarbeitung - Klammertechnik im Holz- und Trockenbau" soll hierbei die Anforderungen und Lösungen der Befestigung von Rigips ${ }^{\circ}$ Plattenmaterialien auf verschiedenen Untergründen zusammenfassen.

Für eine individuelle Beratung und zur Unterstützung Ihrer Planungs- und Ausführungsarbeiten stehen Ihnen unsere Aussendienstmitarbeiter und Techniker gerne zur Verfügung.

Ihren Ansprechpartner finden Sie unter www.gypsum4wood.ch

Inhalt

1	Anforderungen an die Befestigung	4
1.1	Nichttragende Wandkonstruktionen	4
1.2	Tragende und aussteifende Konstruktionen	4
1.3	Sonderfall Erdbebensicherheit	4
1.4	Gebogene Wand-und Deckenkonstruktionen	4
2	Geeignete Untergründe für die Klammertechnik	5
2.1	Holz	5
2.2	Holzwerkstoffplatten (OSB, Spanplatten)	5
2.3	Riduro ${ }^{\circ} \mathrm{Gips}-\mathrm{und}^{\text {Rigidur }}{ }^{\circ} \mathrm{H}$ Gipsfaserplatten	5
3	Geeignete Rigips ${ }^{\circ}$ Bauplatten für die Klammerbefestigung	6
4	Unterscheidungskriterien von Klammern	7
5	Befestigungssituationen	8
5.1	Allgemeine Hinweise zur Verklammerung	8
5.2	Klammerbefestigung Rigips ${ }^{\circ} \mathrm{Gips}$-/Gipsfaserplatten in Holz-Tragkonstruktionen (nicht tragend)	10
5.2.1	Wände	11
5.2.2	Decken / Dächer	14
5.3	Klammerbefestigung Rigips ${ }^{\circ} \mathrm{Gips}$-/Gipsfaserplatten in Holz-Tragkonstruktionen (tragend)	17
5.4	Klammerbefestigung Rigips ${ }^{\circ}$ Gipsfaserplatten in Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten (nicht tragend)	19
5.5	Klammerbefestigung von Rigidur Estrichelementen	20
6	Empfohlene Klammertypen verschiedener Hersteller	21
6.1	Klammerbefestigung Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen - Wände (nicht tragend)	21
6.2	Klammerbefestigung Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen - Decken (nicht tragend)	23
6.3	Klammerbefestigung Riduro ${ }^{\circ}$ Gips-/ Rigidur ${ }^{\circ}$ H Gipsfaserplatten in Holz-Tragkonstruktionen Wände (tragend)	25
6.4	Klammerbefestigung Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten in Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten (nicht tragend)	25
7	Literaturhinweise	26

1 Anforderungen an die Befestigung

1.1 Nichttragende Wandkonstruktionen

Als nichttragende bzw. selbsttragende Wandkonstruktionen werden raumabschliessende Bauteile bezeichnet, welche planmässig durch ihr Eigengewicht sowie Anprall-, Linear- und Konsollasten belastet werden. Der Nachweis der Standsicherheit dieser Bauteile wird üblicherweise nach DIN 4103-1 und der darauf basierenden Anwendungsnorm DIN 18183-1 geführt. Bei Trockenbauwänden werden daher Wandhöhen für die verschiedenen Einbaubereiche angegeben.
Trennwände können ein- oder mehrschalig ausgeführt werden und je nach Ausbildung auch Aufgaben des Brand-, Schall-, Feuchtigkeits- und Wärmeschutzes übernehmen.

1.2 Tragende und aussteifende Konstruktionen

Als tragende und aussteifende Konstruktionen werden raumabschliessende Bauteile bezeichnet, welche planmässig neben dem Eigengewicht, den Anprall-, Linear- und Konsollasten, ausserdem durch Kräfte aus anderen Bauteilen oder Einwirkungen belastet werden und diese Kräfte entsprechend aufnehmen können. Die Aufnahme von vertikalen Lasten erfolgt im Wesentlichen über die tragenden Elemente der Bauteile, wie z. B. Holzständer oder Holzbalken. Unter Umständen kann eine entsprechende Beplankung als mitwirkend angesetzt werden.
Die Ableitung der horizontal auf das Bauteil einwirkenden Kräfte erfolgt durch den Verbund von Unterkonstruktion, Beplankung und Befestigungsmittel.
Insbesondere bei scheibenartiger Beanspruchung des Bauteils wird die aussteifende Wirkung erst durch den Verbund einer stabilen Beplankung mit der Unterkonstruktion und den Befestigungsmitteln erreicht.
Durch die scheibenartige Beanspruchung der Tafel spricht man von Wand- und Deckenscheiben bzw. -tafeln. Der statische Nachweis solcher Wand- und Deckenscheiben im Holzbau erfolgt nach der SIA 265 bzw. der DIN EN 1995-1-1 und dem zugehörigen, nationalen Anwendungsdokument. Die Klammertechnik ermöglicht die im Holzbau vorteilhaften, geringeren Randabstände.
Im Trockenbau stellen tragende, scheibenartig beanspruchte Wandkonstruktionen einen Sonderfall dar, welche im Einzelfall statisch nachgewiesen werden müssen.

1.3 Sonderfall Erdbebensicherheit

Bei der statischen Bemessung von Bauwerken in erdbebengefährdeten Gebieten müssen Wand- und Deckenscheiben noch zusätzliche planmässige Lasten aus dynamischer Schwingung (DIN 4149) aufnehmen können. Holzrahmenbauwände und Decken sind sehr geeignete Bauweisen für das Bauen in Erdbebengebieten. Sie besitzen ein gutes elastisches und plastisches Verformungspotential, gerade in Verbindung mit metallischen Befestigungsmitteln. Der Nachweis für den Einsatz von Riduro ${ }^{\circ}$ Gipsplatten und Rigidur ${ }^{\circ} \mathrm{H}$ Gipsfaserplatten unter dynamischer Beanspruchung ist durch ein entsprechendes Gutachten der VHT Darmstadt erbracht.

1.4 Gebogene Wand- und Deckenkonstruktionen

Gebogene Platten dürfen nicht geklammert werden, da die Platten durch die Klammern zum einen nicht herangezogen werden können und zum anderen, weil die Platten unter Spannung stehen.

[^0]
2 Geeignete Untergründe für die Klammertechnik

2.1 Holz

Neben dem für allgemeine Anwendungen verwendeten Bauschnittholz werden im Holzrahmenbau vor allem nach der Tragfähigkeit sortiertes und technisch getrocknetes Konstruktionsvollholz und Brettschichtholz verwendet. Unterkonstruktionen können aus nach der Tragfähigkeit sortiertem Holz nach DIN 4074-1 oder DIN EN 338 bestehen. Eine Zuordnung der unterschiedlichen Sortier- und Festigkeitsklassen kann gemäss DIN EN 1912 erfolgen.
Eine Direktbeplankung auf Massivholzelementen, z.B. Brettsperrholz / -stapelwände oder Kronoply Magnumboard, ist ebenfalls möglich. Die Holzfeuchte darf dabei max. 12 \% betragen.

2.2 Holzwerkstoffplatten (OSB, Spanplatten)

Wird der Untergrund der Konstruktion durch Holzwerkstoffplatten gebildet, ist grundsätzlich sicherzustellen, dass nur trockene Holzwerkstoffe nach EN 13986 verbaut werden. Auch während der Bauphase müssen geeignete Schutzmassnahmen ergriffen werden um einen unplanmässigen Feuchteeintrag zu verhindern. Eine zusätzliche Unterkonstruktion, z.B. eine Installationsebene, kann die aufgrund von Feuchteänderungen auftretenden Dimensionsänderungen zwischen Gips und Holz kompensieren.
Die Holzfeuchte muss zwischen 8 und 12 \% liegen und das Quell- und Schwindmass darf 0.02\% (Längenänderung) nicht überschreiten. Die Qualität von OSB muss mindestens einer OSB/4 entsprechen.

2.3 Riduro ${ }^{\circ}$ Gips- und Rigidur ${ }^{\circ} \mathrm{H}$ Gipsfaserplatten

Bei mehrlagigen Beplankungen ist eine Klammerbefestigung von Gipsplatten sowohl auf Riduro ${ }^{\circ}$ Gipsplatten als auch auf Rigidur ${ }^{\circ} \mathrm{H}$ Gipsfaserplatten möglich. Durch die Befestigung der zweiten Beplankungslage mit Klammern wird gegenüber der üblichen Schraubbefestigung in der Regel eine bessere schalltechnische Entkopplung erreicht und dadurch ein höherer Schalldämmwert der Konstruktion erzielt.
Statisch gesehen können bei der Befestigung „Platte in Platte" jedoch nur die Werte einer einfach beplankten Wand verwendet werden.

[^1]
3 Geeignete Rigips ${ }^{\circledR}$ Bauplatten für die Klammerbefestigung

Grundsätzlich sind derzeit alle in der unten aufgeführten Liste in den jeweils angegebenen Plattenstärken Rigips ${ }^{\circ}$ Gips- und Gipsfaserplatten sowie Rigidur ${ }^{\circ}$ Estrichelemente und vliesarmierte Gipsplatten zur Klammerbefestigung geeignet.

Gipsplatten:

Rigips ${ }^{\circ}$ Bauplatten RB/RBI	in $9,5 / 12,5 / 18,0 / 25,0 \mathrm{~mm}$
Rigips ${ }^{\circ}$ Feuerschutzplatten RF/RFI	in $12,5 / 15,0 / 18,0 / 20,0 / 25,0 \mathrm{~mm}$
Rigips ${ }^{\circ}$ Die Blaue	in $12,5 \mathrm{~mm}$
Duraline ${ }^{\circ}$	in $12,5 / 15,0 \mathrm{~mm}$
Rigips ${ }^{\circ}$ Duo'Tech RB/RF/DL	in $25,0 \mathrm{~mm}$
Riduro	in $12,5 / 15,0 \mathrm{~mm}$
Rigips ${ }^{\circ}$ Habito	in $12,5 \mathrm{~mm}$

Gipsfaserplatten:

Rigidur ${ }^{\circ} \mathrm{H}$	in $10,0 / 12,5 / 15,0 / 18,0 \mathrm{~mm}$
Rigidur ${ }^{\circ} \mathrm{H}$ Activ'Air	in $10,0 / 12,5 \mathrm{~mm}$
Rigidur H AK	in $12,5 \mathrm{~mm}$
Rigidur ${ }^{\circ} \mathrm{H}(\mathrm{A} 1)$	in $10,0 / 12,5 \mathrm{~mm}$
Rigidur ${ }^{\circ} \mathrm{Hsd}$	in $12,5 \mathrm{~mm}$
Rigidur XXL	in $10,0 / 12,5 / 15,0 \mathrm{~mm}$
Rigidur ${ }^{\circ}$ Estrichelemente	in $2 \times 10,0 / 2 \times 12,5 \mathrm{~mm}$

Vliesarmierte Gipsplatten:	
Rigips ${ }^{\circ}$ Glasroc F (Ridurit)	in $15,0 / 20,0 / 25,0 \mathrm{~mm}$
Rigips ${ }^{\circ}$ Glasroc H	in $12,0 \mathrm{~mm}$

[^2]
4 Unterscheidungskriterien von Klammern

Klammern werden hinsichtlich ihrer Geometrie, Drahtdurchmesser, Rückenbreite und Klammerlänge, sowie der Spitzenform und ihrer Beschichtung unterschieden. Üblicherweise sind verzinkte Klammern, aber auch solche aus Edelstahl, jeweils in geharzter Form standardmässig im Markt vertreten. Für Befestigungen, die langfristig und ständig auf Herausziehen beansprucht werden, sollten bauaufsichtlich / baurechtlich zugeIassene Klammern gemäss DIN 18182 bzw. gemäss Eurocode 5 oder SIA 265 verwendet werden.
Gewöhnlich sind für die Verklammerung in eine Holz-Unterkonstruktion Keilklammern (Meisselspitze) und für die Verklammerung in Plattenmaterial Spreizklammern vorgesehen.

Keilklammer

Spreizklammer

Abbildung 1: Prinzipskizze Klammerformen

5 Befestigungssituationen

5.1 Allgemeine Hinweise zur Verklammerung

Grundsätzlich ist es von besonderer Wichtigkeit, dass bei der Verklammerung von Gips-, Gipsfaser- und vliesarmierten Gipsplatten sorgfältig und gewissenhaft gearbeitet wird. Folgende verarbeitungs- und damit auch ergebnisrelevante Hinweise sollen stets beachtet werden:

■ Einstellung des Klammergeräts (d.h. die Einschlagtiefe auf den entsprechenden Untergrund) und die vom Ausführenden ausgeübte Arbeitsgeschwindigkeit und Arbeitsweise
■ Andrücken der Platte während des Klammervorgangs, so dass es zu keinen Spalten zwischen den Lagen oder zwischen der Platte und dem Untergrund kommen kann

- Möglichst bündiges Versenken der Klammer in der Platte (siehe Abbildung 2)
- Gerades Aufsetzen des Klammergerätes

Generell dürfen die Klammern bezüglich ihrer Eindringtiefe nur wie in Abbildung 2 dargestellt verklammert werden. Die Klammern dürfen nicht überstehen, aber auch nicht zu tief versenkt werden.

zulässig bündig

Gipsplatten $\mathrm{t} \leq 1,0 \mathrm{~mm}$ Rigidur $\quad \mathrm{t} \leq 2,0 \mathrm{~mm}$

zulässig versenkt

Gipsplatten $\mathrm{t}>1$ 1,0mm
Rigidur $\quad t>2,0 \mathrm{~mm}$
$\frac{\text { unzulässig }}{\text { versenkt }}$

unzulässig

Abbildung 2: Eidringtiefe des Klammerrückens zur Plattenoberfläche

Bei nichttragenden Wand- und Deckenkonstruktionen können die Befestigungspunkte bei Rigidur ${ }^{\circ}$ - und kartonummantelten Kanten bis auf $\geq 10 \mathrm{~mm}$ an den Plattenrand heran gesetzt werden, ohne dass es zu Kantenausbrüchen kommt. Bei Plattenkanten von Gipsplatten ohne Kartonummantelung ist ein Abstand von $\geq 15 \mathrm{~mm}$ einzuhalten.
Bei tragenden Wandkonstruktionen sind die Randabstände des entsprechenden Kapitels (5.3) dieses Dokumentes zu berücksichtigen.

[^3]Der Winkel zwischen Klammerrücken und der Vertikalen (bei Holz-Unterkonstruktionen = Faserrichtung des Holzes; bei Verklammerung in Plattenmaterialien = Plattenlängsrichtung / Produktionsrichtung) sollte bei tragenden Konstruktionen mindestens 30° betragen (DIN EN 1995-1-1), damit die Bemessungswerte nicht abgemindert werden müssen. Bei nichttragenden Konstruktionen mit Gipsplatten wird ein Winkel von ca. 45° vorgeschrieben (DIN 18181).

Abbildung 3: Klammerstellungen

Beplankungslagen, die auf Plattenmaterial befestigt werden (Befestigung „Platte in Platte"), werden bei der Berechnung des Standsicherheitsnachweises nicht berücksichtigt. Bei einer zweilagig beplankten Wand, bei der die zweite Lage in die erste Lage geklammert wurde, bedeutet dies, dass als maximale Wandhöhe nur die Höhe der Konstruktion mit einlagiger Beplankung herangezogen werden darf.
Weiterhin ist zu beachten, dass zur Lastabtragung von Konsol- und Befestigungslasten nur die Plattenlagen angesetzt werden dürfen, welche mit wirksam in die Unterkonstruktion eingebrachten Befestigungsmitteln befestigt wurden.

Die Klammerbefestigung von Rigips ${ }^{\circledR}$ Gips- und Gipsfaserplatten auf Metallprofile ist nicht zu empfehlen.

[^4]
5.2 Klammerbefestigung Rigips ${ }^{\circledR}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen (nicht tragend)

Bei der Befestigung „Plattenmaterial auf Tragkonstruktion", wobei die Tragkonstruktion Latten, Balken oder Holzwerkstoffplatten sein können, wird jede Beplankungslage bis in die Unterkonstruktion verklammert. Dies gilt für ein- und mehrlagige Konstruktionen. Die Auswahl der geeigneten Klammer erfolgt nach Anforderung an die Befestigung, der Beplankungsstärke und der erforderlichen Eindringtiefe.
Für nicht tragende Konstruktionen sind Klammern nach DIN 18182-2 bzw. EN 14566 zu wählen, die von den jeweiligen Herstellern für diese Verwendung freigegeben sind. Für die Befestigung in Holzunterkonstruktionen empfiehlt sich die Verwendung von Klammern mit Meisselspitze.
Die erforderliche Eindringtiefe steht in direkter Abhängigkeit zur Klammerdrahtstärke. Die Mindestlänge der Klammern ergibt sich nach DIN 18181 aus der entsprechenden Beplankungsdicke und der erforderlichen Eindringtiefe.

$$
\text { Eindringtiefe } s \geq 15 \times d_{n} \quad \text { (nach DIN 18181) }
$$

$d_{n}=$ Klammerdrahtdurchmesser

Werden die Bauteile werkseitig vorgefertigt, wird eine Erhöhung der Klammerlänge um ca. 10\% in Bezug auf die statisch erforderliche Eindringtiefe empfohlen. Die Klammern dürfen nur soweit eingetrieben werden, wie es für ein einwandfreies Verspachteln notwendig ist.
Nachfolgend aufgeführte Tabellen weisen Klammerlängen für die bauseitige Montage aus.

[^5]
5.2.1 Wände

In Tabelle 1 finden sich Empfehlungen zu Klammerlänge, Klammerabstand sowie dem Unterkonstruktionsabstand bei der Befestigung von 1-lagig beplankten Wand-Konstruktionen mit Beplankungen aus Gips- oder Gipsfaserplatten. Dazu wird der entsprechende Klammerverbrauch pro m^{2} angegeben.

Tabelle 1: Klammerbefestigung von einer Lage Gips- oder Gipsfaserplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

Beplankung [Dicke in mm]	Klammerlänge ${ }^{\text {a }}$	Klammerabstand ${ }^{\text {b }}$	UK-Abstand		Verbrauch (circa)
			Querbefestigung	Längsbefestigung	
Gipsplatten	[mm]	[mm]	[mm]	[mm]	[St./m²]
12.5	≥ 35	≤ 80	≤ 625	≤ 625	40
15.0	≥ 38	≤ 80	≤ 625	≤ 625	40
18.0	≥ 41	≤ 80	≤ 625	≤ 625	40
20.0	≥ 43	≤ 80	≤ 625	≤ 625	40
25.0	≥ 48	≤ 80	≤ 625	≤ 625	40
Beplankung [Dicke in mm]	Klammerlänge ${ }^{\text {a }}$	Klammerabstand $^{\text {c }}$	UK- Abstand ${ }^{\text {c }}$		Verbrauch (circa)
Rigidur H	[mm]	[mm]	[mm]		[St./m²]
12.5	≥ 35	≤ 200	≤ 625		20
15.0	≥ 38	≤ 200	≤ 625		20

a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$
b nach DIN 18181
c nach gypsum4wood Verarbeitungsrichtlinien

Die Klammerempfehlungen sind in Tabelle 12 (Gipsplatten) bzw. Tabelle 13 (Gipsfaserplatten) aufgeführt.

In den Tabellen 2 bis 4 finden sich weiterhin Empfehlungen zu Klammerlänge, Klammerabstand sowie dem Unterkonstruktionsabstand bei der Befestigung von 2-lagig beplankten Wand-Konstruktionen mit Beplankungen aus Gips-, Gipsfaserplatten oder Kombinationen aus diesen. Die Befestigung erfolgt hier stets bis in die Unterkonstruktion. Dazu wird der entsprechende Klammerverbrauch pro m² angegeben.
Bei 2-lagigen Beplankungen gelten für die 1. Lage grundsätzlich die Angaben (Klammerlänge) gemäss Tabelle 1. In der Regel kann jedoch der Klammerabstand der 1. Lage bei 2-lagigen Konstruktionen entsprechend der Tabellen 3 bis 5 vergrössert werden.

[^6]Tabelle 2: Klammerbefestigung von einer 2. Lage Gipsplatten durch eine 1. Lage Gipsplatten auf
Holz-Unterkonstruktionen bei nichttragenden Wänden

Beplankung [Dicke in mm]		$\begin{gathered} \hline \text { Klammer- } \\ \text { länge }{ }^{\text {a }} \\ \text { 2. Lage } \\ \hline \end{gathered}$	Klammerabstand ${ }^{\text {b }}$		UK-Abstand		Verbrauch 1. / 2. Lage (circa)
1. Lage	2. Lage		1. Lage	2. Lage	Querbef.	Längsbef.	
Gipsplatten	Gipsplatten	[mm]	[mm]	[mm]	[mm]	[mm]	[St./m²]
9.5	9.5	≥ 42	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
12.5	9.5	≥ 45	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
12.5	12.5	≥ 48	≤ 240	≤ 80	≤ 625	≤ 625	15/40
15.0	9.5	≥ 47	≤ 240	≤ 80	≤ 625	≤ 625	15/40
15.0	12.5	≥ 50	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
15.0	15.0	≥ 53	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
18.0	9.5	≥ 50	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
18.0	12.5	≥ 53	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
18.0	15.0	≥ 56	≤ 240	≤ 80	≤ 625	≤ 625	15/40
18.0	18.0	≥ 59	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
20.0	9.5	≥ 52	≤ 240	≤ 80	≤ 625	≤ 625	15/40
20.0	12.5	≥ 55	≤ 240	≤ 80	≤ 625	≤ 625	15/40
20.0	15.0	≥ 58	≤ 240	≤ 80	≤ 625	≤ 625	15/40
20.0	18.0	≥ 61	≤ 240	≤ 80	≤ 625	≤ 625	15/40
20.0	20.0	≥ 63	≤ 240	≤ 80	≤ 625	≤ 625	15/40
25.0	9.5	≥ 57	≤ 240	≤ 80	≤ 625	≤ 625	15/40
25.0	12.5	≥ 60	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
25.0	15.0	≥ 63	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
25.0	18.0	≥ 66	≤ 240	≤ 80	≤ 625	≤ 625	15/40
25.0	20.0	≥ 68	≤ 240	≤ 80	≤ 625	≤ 625	$15 / 40$
25.0	25.0	≥ 73	≤ 240	≤ 80	≤ 625	≤ 625	15/40

a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$
b nach DIN 18181

Die Klammerempfehlungen sind in Tabelle 14 aufgeführt.

[^7]Tabelle 3: Klammerbefestigung von einer 2. Lage Gipsplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

Beplankung [Dicke in mm]		$\begin{gathered} \hline \text { Klammer- } \\ \text { länge }^{\text {a }} \\ \text { 2. Lage } \\ \hline \end{gathered}$	Klammerabstand		UK-Abstand		Verbrauch 1. / 2. Lage (circa)
1. Lage	2. Lage		1. Lage ${ }^{\text {c }}$	2. Lage ${ }^{\text {b }}$	Querbef.	Längsbef.	
Rigidur H	Gipsplatten	[mm]	[mm]	[mm]	[mm]	[mm]	[St./m²]
10.0	9.5	≥ 42	≤ 400	≤ 80	≤ 625	≤ 625	10/40
12.5	9.5	≥ 45	≤ 400	≤ 80	≤ 625	≤ 625	10/40
12.5	12.5	≥ 48	≤ 400	≤ 80	≤ 625	≤ 625	$10 / 40$
15.0	9.5	≥ 47	≤ 400	≤ 80	≤ 625	≤ 625	$10 / 40$
15.0	12.5	≥ 50	≤ 400	≤ 80	≤ 625	≤ 625	10/40
15.0	15.0	≥ 53	≤ 400	≤ 80	≤ 625	≤ 625	10/40
15.0	18.0	≥ 56	≤ 400	≤ 80	≤ 625	≤ 625	$10 / 40$
15.0	20.0	≥ 58	≤ 400	≤ 80	≤ 625	≤ 625	10/40
15.0	25.0	≥ 63	≤ 400	≤ 80	≤ 625	≤ 625	10/40

a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$
b nach DIN 18181
c nach gypsum4wood Verarbeitungsrichtlinien

Die Klammerempfehlungen sind in Tabelle 15 aufgeführt.

Tabelle 4: Klammerbefestigung einer 2. Lage Gipsfaserplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

Beplankung [Dicke in mm]		Klammerlänge ${ }^{\text {a }}$ 2. Lage	Klammerabstand ${ }^{\text {c }}$		UK- Abstand ${ }^{\text {c }}$	Verbrauch 1. / 2. Lage (circa)
1. Lage	2. Lage		1. Lage	2. Lage		
Rigidur H	Rigidur H	[mm]	[mm]	[mm]	[mm]	[St./m²]
10.0	10.0	≥ 43	≤ 400	≤ 200	≤ 625	10/20
12.5	10.0	≥ 45	≤ 400	≤ 200	≤ 625	$10 / 20$
12.5	12.5	≥ 48	≤ 400	≤ 200	≤ 625	$10 / 20$
15.0	10.0	≥ 48	≤ 400	≤ 200	≤ 625	$10 / 20$
15.0	12.5	≥ 50	≤ 400	≤ 200	≤ 625	10 / 20
15.0	15.0	≥ 53	≤ 400	≤ 200	≤ 625	$10 / 20$
a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$ c nach gypsum4wood Verarbeitungsrichtlinien						

Die Klammerempfehlungen sind in Tabelle 14 aufgeführt.

[^8]
5.2.2 Decken / Dächer

In Tabelle 5 finden sich Empfehlungen zu Klammerlänge, Klammerabstand sowie dem Unterkonstruktionsabstand bei der Befestigung von 1-lagig beplankten Decken- und Dach-Konstruktionen mit Beplankungen aus Gips- oder Gipsfaserplatten. Dazu wird der entsprechende Klammerverbrauch pro m^{2} angegeben.

Tabelle 5: Klammerbefestigung von einer nicht mittragenden bzw. aussteifenden Lage
Gips- oder Gipsfaserplatten auf Holz-Unterkonstruktionen bei Decken / Dächern

Beplankung [Dicke in mm]	Klammerlänge ${ }^{\text {a }}$	Klammerabstand ${ }^{\text {b }}$	UK-Abstand		Verbrauch (circa)
			Querbefestigung	Längsbefestigung	
Gipsplatten	[mm]	[mm]	[mm]	[mm]	[St./m²]
9.5	≥ 32	≤ 80	≤ 500	≤ 420	$25 / 30$
12.5	≥ 35	≤ 80	≤ 500	≤ 420	$25 / 30$
15.0	≥ 38	≤ 80	≤ 550	≤ 420	$25 / 30$
18.0	≥ 41	≤ 80	≤ 625	≤ 420	20/30
20.0	≥ 43	≤ 80	≤ 625	≤ 420	20/30
25.0	≥ 48	≤ 80	≤ 625	≤ 420	20/30
Beplankung [Dicke in mm]	Klammerlänge ${ }^{\text {a }}$	Klammerabstand ${ }^{\text {c }}$	UK- A	tand ${ }^{\text {c }}$	Verbrauch (circa)
Rigidur H	[mm]	[mm]			[St./m²]
10.0	≥ 33	≤ 150			20/30
12.5	≥ 35	≤ 150			20/25
15.0	≥ 38	≤ 150			20/25

a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$
b nach DIN 18181
c nach gypsum4wood Verarbeitungsrichtlinien

Die Klammerempfehlungen sind in Tabelle 16 (Gipsplatten) bzw. Tabelle 17 (Gipsfaserplatten) aufgeführt.

In den Tabellen 6 bis 8 finden sich zusätzlich die Empfehlungen zu Klammerlänge, Klammerabstand sowie dem Unterkonstruktionsabstand bei der Befestigung von 2-lagig beplankten Decken- und Dach-
Konstruktionen mit Beplankungen aus Gips-, Gipsfaserplatten oder Kombinationen aus diesen. Die Befestigung erfolgt auch hier stets bis in die Unterkonstruktion. Dazu wird der entsprechende Klammerverbrauch pro m^{2} angegeben.
Bei 2-lagigen Beplankungen gelten hier für die 1. Lage grundsätzlich die Angaben (Klammerlänge) gemäss Tabelle 5. In der Regel kann jedoch der Klammerabstand der 1. Lage bei 2-lagigen Konstruktionen entsprechend der Tabellen 6 bis 8 vergrössert werden.

[^9]Tabelle 6: Klammerbefestigung von einer nicht mittragenden bzw. aussteifenden 2. Lage
Gipsplatten durch eine 1. Lage Gipsplatten auf Holz-Unterkonstruktionen bei Decken / Dächern

Beplankung [Dicke in mm]		$\begin{gathered} \hline \text { Klammer- } \\ \text { länge }^{\text {a }} \\ \text { 2. Lage } \\ \hline \end{gathered}$	Klammerabstand ${ }^{\circ}$		UK-Abstand		Verbrauch 1. / 2. Lage quer (circa)
1. Lage	2. Lage		1. Lage	2. Lage	Querbef.	Längsbef.	
Gipsplatten	Gipsplatten	[mm]	[mm]	[mm]	[mm]	[mm]	[St./m²]
9.5	9.5	≥ 42	≤ 240	≤ 80	≤ 500	≤ 420	10/30
12.5	9.5	≥ 45	≤ 240	≤ 80	≤ 500	≤ 420	10 / 30
12.5	12.5	≥ 48	≤ 240	≤ 80	≤ 500	≤ 420	10 / 30
15.0	9.5	≥ 47	≤ 240	≤ 80	≤ 500	≤ 420	10 / 30
15.0	12.5	≥ 50	≤ 240	≤ 80	≤ 500	≤ 420	10 / 30
15.0	15.0	≥ 53	≤ 240	≤ 80	≤ 550	≤ 420	10 / 30
18.0	9.5	≥ 50	≤ 240	≤ 80	≤ 500	≤ 420	$10 / 30$
18.0	12.5	≥ 53	≤ 240	≤ 80	≤ 500	≤ 420	10 / 30
18.0	15.0	≥ 56	≤ 240	≤ 80	≤ 550	≤ 420	$10 / 30$
18.0	18.0	≥ 59	≤ 240	≤ 80	≤ 625	≤ 420	$10 / 25$
20.0	9.5	≥ 52	≤ 240	≤ 80	≤ 500	≤ 420	$10 / 30$
20.0	12.5	≥ 55	≤ 240	≤ 80	≤ 500	≤ 420	10/30
20.0	15.0	≥ 58	≤ 240	≤ 80	≤ 550	≤ 420	10/30
20.0	18.0	≥ 61	≤ 240	≤ 80	≤ 625	≤ 420	10/25
20.0	20.0	≥ 63	≤ 240	≤ 80	≤ 625	≤ 420	10/25
25.0	9.5	≥ 57	≤ 240	≤ 80	≤ 500	≤ 420	10/30
25.0	12.5	≥ 60	≤ 240	≤ 80	≤ 500	≤ 420	10/30
25.0	15.0	≥ 63	≤ 240	≤ 80	≤ 550	≤ 420	10/30
25.0	18.0	≥ 66	≤ 240	≤ 80	≤ 625	≤ 420	10/25
25.0	20.0	≥ 68	≤ 240	≤ 80	≤ 625	≤ 420	10/25
25.0	25.0	≥ 73	≤ 240	≤ 80	≤ 625	≤ 420	10/25
a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$ b nach DIN 18181							

Die Klammerempfehlungen sind in Tabelle 18 aufgeführt.

[^10]Tabelle 7: Klammerbefestigung von einer nicht mittragenden bzw. aussteifenden 2. Lage
Gipsplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei Decken / Dächern

Beplankung [Dicke in mm]		$\begin{gathered} \hline \text { Klammer- } \\ \text { länge }{ }^{\text {a }} \\ \text { 2. Lage } \\ \hline \end{gathered}$	Klammerabstand		UK-Abstand		Verbrauch 1. / 2. Lage quer (circa)
1. Lage	2. Lage		1. Lage ${ }^{\text {c }}$	2. Lage ${ }^{\text {b }}$	Querbef.	Längsbef.	
Rigidur H	Gipsplatten	[mm]	[mm]	[mm]	[mm]	[mm]	[St./m²]
10.0	9.5	≥ 42	≤ 300	≤ 80	≤ 500	≤ 420	$10 / 30$
12.5	9.5	≥ 45	≤ 300	≤ 80	≤ 500	≤ 420	$10 / 30$
12.5	12.5	≥ 48	≤ 300	≤ 80	≤ 500	≤ 420	$10 / 30$
15.0	9.5	≥ 47	≤ 300	≤ 80	≤ 500	≤ 420	$10 / 30$
15.0	12.5	≥ 50	≤ 300	≤ 80	≤ 500	≤ 420	$10 / 30$
15.0	15.0	≥ 53	≤ 300	≤ 80	≤ 550	≤ 420	$10 / 30$
15.0	18.0	≥ 56	≤ 300	≤ 80	≤ 550	≤ 420	$10 / 30$
15.0	20.0	≥ 58	≤ 300	≤ 80	≤ 550	≤ 420	$10 / 30$
15.0	25.0	≥ 63	≤ 300	≤ 80	≤ 550	≤ 420	10/30

a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$
b nach DIN 18181
c nach gypsum4wood Verarbeitungsrichtlinien

Die Klammerempfehlungen sind in Tabelle 19 aufgeführt.

Tabelle 8: Klammerbefestigung von einer nicht mittragenden bzw. aussteifenden 2. Lage
Gipsfaserplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei Decken / Dächern

Beplankung [Dicke in mm]		$\begin{gathered} \text { Klammer- } \\ \text { länge }^{\text {a }} \\ \text { 2. Lage } \\ \hline \end{gathered}$	Klammerabstand ${ }^{\text {c }}$		UK- Abstand ${ }^{\text {c }}$	Verbrauch 1. / 2. Lage quer (circa)
1. Lage	2. Lage		1. Lage	2. Lage		
Rigidur H	Rigidur H	[mm]	[mm]	[mm]	[mm]	[St./m²]
10.0	10.0	≥ 43	≤ 300	≤ 150	≤ 400	$10 / 20$
12.5	10.0	≥ 45	≤ 300	≤ 150	≤ 400	10/20
12.5	12.5	≥ 48	≤ 300	≤ 150	≤ 500	10/20
15.0	10.0	≥ 48	≤ 300	≤ 150	≤ 400	10/20
15.0	12.5	≥ 50	≤ 300	≤ 150	≤ 500	10/20
15.0	15.0	≥ 53	≤ 300	≤ 150	≤ 550	10/20
a bei einer Klammerdrahtstärke $d_{n}=1,53 \mathrm{~mm}$ c nach gypsum4wood Verarbeitungsrichtlinien						

Die Klammerempfehlungen sind in Tabelle 19 aufgeführt.

[^11]
5.3 Klammerbefestigung Rigips ${ }^{\ominus}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen (tragend)

Je nach Anforderungen an den Schall- oder Brandschutz kann die Unterkonstruktion ein- oder mehrlagig mit Riduro ${ }^{\circ}$ oder Rigidur ${ }^{\circ} \mathrm{H}$ beplankt werden. Weiterhin können die Platten sowohl als einseitige als auch beidseitige Beplankung statische Aufgaben erfüllen. Werden Wände nicht in einem Stück gefertigt, sondern Wandelemente aneinandergestellt, sind diese unbedingt kraftschlüssig miteinander zu verbinden. Beispiele zu den zulässigen Horizontallasten in Abhängigkeit von den eingesetzten Befestigungsmaterialen und Abständen bei mittragenden oder aussteifenden Beplankungen finden Sie in der gypsum4wood Broschüre Planung \& Konstruktion.

Für die Verklammerung bei tragenden Wandkonstruktionen sind bauaufsichtlich zugelassene Verbindungsmittel gemäss SIA 265 oder DIN EN 1995-1-1 mit nationalem Anhang zu verwenden.
Werden Klammern als Verbindungsmittel der Riduro ${ }^{\circ}$ Gips- oder Rigidur ${ }^{\bullet}$ H Gipsfaserplatten mit der Unterkonstruktion verwendet, müssen diese verzinkt und/oder nicht rostend sein. Zudem müssen sie einen Durchmesser d zwischen $1,5 \mathrm{~mm}$ und $4,0 \mathrm{~mm}$ und eine Rückenbreite $b_{R} \geq 6 x d$ haben. Die Abstände der Verbindungsmittel vom unbeanspruchten Rand der Gips - bzw. Gipsfaserplatte müssen mindestens $5 \times d$ und vom beanspruchten Rand mindestens $7 \times d$ betragen. Die Mindesteinschlagtiefe muss $\geq 32 \mathrm{~mm}$ sein.

Abbildung 4: Erforderliche Randabstände und Einschlagtiefen der Befestigungsmittel

[^12]

Abbildung 5: Erforderliche Randabstände der Befestigungsmittel
Beispiele für die Verbindungsmittelabstände \mathbf{e}^{R} befinden sich in der gypsum4wood Broschüre Planung \& Konstruktion.
Bei Anbringung einer zweiten, nichttragenden Lage kann diese mittels geharzten Spreizklammern aus Stahldraht $d_{n} \geq 1,5 \mathrm{~mm}$ ständerunabhängig auf der ersten Lage befestigt werden. Die Klammerlänge ist entsprechend der Beplankungsdicke zu wählen. Der Versatz der Plattenstösse der 2. Lage zur 1. Lage muss mind. 250 mm betragen.

Abbildung 6: Erforderliche Randabstände der Befestigungsmittel bei Befestigung der 2. Lage

[^13]
5.4 Klammerbefestigung Rigips ${ }^{\circ}$ Gipsfaserplatten in Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten (nicht tragend)

Bei der Befestigungsart „Platte in Platte" wird die 1. Beplankungslage mit der Unterkonstruktion verbunden. Die Befestigung der 2. Beplankungslage erfolgt dann unabhängig von der Unterkonstruktion in die 1. Beplankungslage. Der Versatz der Plattenstösse der 2. Lage zur 1. Lage muss jedoch mindestens 250 mm betragen. Die Klammerlängen und -abstände der 2. Beplankungslage müssen dabei entsprechend der folgenden Tabellen eingehalten werden. Die Klammerabstände der 1. Beplankungslage dürfen bei dieser Befestigungsart nicht vergrössert werden.
Die Bestimmung der Klammerlänge erfolgt in Abhängigkeit der Beplankungsstärken, wobei die Klammer die 1. Beplankungslage nicht durchstossen soll. Hierfür werden sogenannte Spreizklammern mit entsprechender Klammerspitzengeometrie verwendet. Auch für diese Art der Befestigung sind Klammern nach DIN 18182-2 bzw. EN 14566 zu wählen, die von den jeweiligen Herstellern für diese Verwendung freigegeben sind.

Tabelle 9: Klammerbefestigung der 2. Beplankungslage aus Gipsplatten in
die 1. Beplankungslage aus Gipsfaserplatten bei nichttragenden Wänden

Beplankung [Dicke in mm]		Klammerlänge	Klammerabstand	Reihenabstand	Verbrauch nur 2. Lage (circa)
1. Lage	2. Lage		2. Lage	2. Lage	
Rigidur H	Gipsplatten	[mm]	[mm]	[mm]	[St./m²]
10.0	9.5	18-19	≤ 80	≤ 420	50
12.5	9.5	18-20	≤ 80	≤ 420	50
12.5	12.5	22-23	≤ 80	≤ 420	50
15.0	9.5	22-23	≤ 80	≤ 420	50
15.0	12.5	22-25	≤ 80	≤ 420	50
15.0	15.0	25-28	≤ 80	≤ 420	50
15.0	18.0	28-31	≤ 80	≤ 420	50
15.0	20.0	30-33	≤ 80	≤ 420	50
15.0	25.0	35-38	≤ 80	≤ 420	50

Die Klammerempfehlungen sind in Tabelle 20 aufgeführt.
Tabelle 10: Klammerbefestigung der 2. Beplankungslage aus Gipsfaserplatten in die 1. Beplankungslage aus Gipsfaserplatten bei nichttragenden Wänden

Beplankung [Dicke in mm]		Klammerlänge	Klammerabstand	Reihenabstand	Verbrauch nur 2. Lage (circa)
1. Lage	2. Lage		2. Lage	2. Lage	
Rigidur H	Rigidur H	[mm]	[mm]	[mm]	[St./m²]
10.0	10.0	18-19	≤ 150	≤ 420	30
12.5	10.0	19-20	≤ 150	≤ 420	30
12.5	12.5	22-23	≤ 150	≤ 420	30
15.0	10.0	22-23	≤ 150	≤ 420	30
15.0	12.5	22-25	≤ 150	≤ 420	30
15.0	15.0	25-28	≤ 150	≤ 420	30

Die Klammerempfehlungen sind in Tabelle 20 aufgeführt.

[^14]
5.5 Klammerbefestigung von Rigidur ${ }^{\ominus}$ Estrichelementen

Für die Verbindung von Rigidur Estrichelementen werden, wie bei der Verklammerung „Platte in Platte", Spreizklammern nach DIN EN 14566 in Verbindung mit DIN 18182-2 verwendet.

Tabelle 11: Verbindungsmittel für Rigidur ${ }^{\circ}$ Estrichelemente

Rigidur Estrichelemente	Klammer- länge $[\mathrm{mm}]$	Klammer- abstand $[\mathrm{mm}]$	Verbrauch (circa) $\left[\mathrm{st} . / \mathrm{m}^{2}\right]$
$2 \times 10,0$	$18-19$	≤ 150	20
$2 \times 12,5$	$21-22$	≤ 150	20

Die Klammerempfehlungen sind in Tabelle 19 aufgeführt.

Abbildung 7: Verlegung von Rigidur ${ }^{\circ}$ Estrichelementen

[^15]
6 Empfohlene Klammertypen verschiedener Hersteller

In den folgenden Übersichten sind die zu den jeweiligen Befestigungssituationen passenden Klammern, welche von den Befestigungsmittel-Herstellern empfohlen werden, aufgeführt. Bei einer Vorfertigung von Wandkonstruktionen sind die Klammerlängen zur Befestigung in die Holz-Unterkonstruktion um 10 \% zu erhöhen.

6.1 Klammerbefestigung Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen - Wände (nicht tragend)

Tabelle 12: Klammertypen zur Befestigung von einer Lage Gipsplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

1. Lage	Dicke	Klammertypen			
		BEA	Haubold	Poppers-Senco	Prebena
		$14 / 35 \mathrm{NKHZ}$	KG 740 CNK geharzt	$\mathrm{M} 17, \mathrm{vz} / \mathrm{N} 16, \mathrm{vz}$	Z38CNKHA
Gipsplatte		$14 / 38 \mathrm{NKHZ}$	KG 740 CNK geharzt	$\mathrm{M} 17, \mathrm{vz} / \mathrm{N} 17, \mathrm{vz}$	Z38CNKHA
Gipsplatte	15.0	$16 / 45 \mathrm{NKHZ}$	KG 745 CNK geharzt	$\mathrm{N} 19, \mathrm{vz}$	Z44CNKHA
Gipsplatte	18.0	$16 / 45 \mathrm{NKHZ}$	KG 745 CNK geharzt	$\mathrm{N} 19, \mathrm{vz}$	Z44CNKHA
Gipsplatte	20.0	$16 / 50 \mathrm{NKHZ}$	KG 750 CNK geharzt	$\mathrm{N} 21, \mathrm{vz}$	Z50CNKHA
Gipsplatte	25.0	$16 / 50 \mathrm{Nan}$			

Hinweise zur Klammerbefestigung sind in Tabelle 1 zu finden.

Tabelle 13: Klammertypen zur Befestigung von einer Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

1. Lage	Dicke	Klammertypen			
		BEA	Haubold	1. Lage	Poppers-Senco
		$14 / 35 \mathrm{NKHZ}$	KG 740 CNK geharzt	N16, vz	P38CNKHA
Rigidur H	12.5	$14 / 38 \mathrm{NKHZ}$	KG 740 CNK geharzt	N17, vz	Z44CNKHA
Rigidur H	15.0				

Hinweise zur Klammerbefestigung sind in Tabelle 1 zu finden.

[^16]Tabelle 14: Klammertypen zur Befestigung von einer 2. Lage Gipsplatten durch eine 1. Lage
Gipsplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

1. Lage	Dicke	2. Lage	Dicke	Klammertypen 2. Lage			
				BEA	Haubold	Poppers-Senco	Prebena
Gipsplatte	9.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N19, vz	Z50CNKHA
Gipsplatte	12.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	12.5	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	15.0	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	18.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	18.0	Gipsplatte	12.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	18.0	Gipsplatte	15.0	16/60 NKHZ	KG 760 CNK geharzt	N23, vz	Z60CNKHA
Gipsplatte	18.0	Gipsplatte	18.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	20.0	Gipsplatte	9.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	20.0	Gipsplatte	12.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	20.0	Gipsplatte	15.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	20.0	Gipsplatte	18.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z63CNKHA
Gipsplatte	20.0	Gipsplatte	20.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z63CNKHA
Gipsplatte	25.0	Gipsplatte	9.5	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	25.0	Gipsplatte	12.5	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	25.0	Gipsplatte	15.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z67CNKHA
Gipsplatte	25.0	Gipsplatte	18.0	-	KG 770 CNK geharzt	-	Z67CNKHA
Gipsplatte	25.0	Gipsplatte	20.0	-	KG 770 CNK geharzt	-	Z75CNKHA
Gipsplatte	25.0	Gipsplatte	25.0	-	KG 775 CNK geharzt	-	Z75CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 2 zu finden.

Tabelle 15: Klammertypen zur Befestigung von einer 2. Lage Gips- bzw. Gipsfaserplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei nichttragenden Wänden

1. Lage	Dicke	2. Lage	Dicke	Klammertypen 2. Lage			
				BEA	Haubold	Poppers-Senco	Prebena
Rigidur H	10.0	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N19, vz	Z44CNKHA
Rigidur H	12.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	12.5	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	15.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	15.0	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z55CNKHA
Rigidur H	15.0	Gipsplatte	15.0	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Rigidur H	15.0	Gipsplatte	18.0	16/60 NKHZ	KG 760 CNK geharzt	N23, vz	Z60CNKHA
Rigidur H	15.0	Gipsplatte	20.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Rigidur H	15.0	Gipsplatte	25.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z64CNKHA
Rigidur H	10.0	Rigidur H	10.0	16/45 NKHZ	HD7955 CNK 1.83/50	N19, vz	Z44CNKHA
Rigidur H	12.5	Rigidur H	10.0	16/45 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	12.5	Rigidur H	12.5	16/50 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	15.0	Rigidur H	10.0	16/50 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	15.0	Rigidur H	12.5	16/50 NKHZ	HD7955 CNK 1.83/60	N21, vz	Z55CNKHA
Rigidur H	15.0	Rigidur H	15.0	16/60 NKHZ	HD7955 CNK 1.83/60	N23, vz	Z55CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 3 und Tabelle 4 zu finden.

[^17]
6.2 Klammerbefestigung Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten in Holz-Tragkonstruktionen - Decken (nicht tragend)

Tabelle 16: Klammertypen zur Befestigung von einer nicht mittragenden bzw. aussteifenden Lage Gipsplatten auf Holz-Unterkonstruktionen bei Decken

1. Lage	Dicke	Klammertypen			
		BEA	Haubold	Poppers-Senco	Prebena
		9.5	$14 / 35 \mathrm{NKHZ}$	KG 735 CNK geharzt	$\mathrm{M} 15, \mathrm{vz} / \mathrm{N} 15, \mathrm{vz}$
Gipsplatte		$14 / 35 \mathrm{NKHZ}$	KG 740 CNK geharzt	$\mathrm{M} 17, \mathrm{vz} / \mathrm{N} 16, \mathrm{vz}$	Z32CNKHA
Gipsplatte	15.0	$14 / 38 \mathrm{NKHZ}$	KG 740 CNK geharzt	$\mathrm{M} 17, \mathrm{vz} / \mathrm{N} 17, \mathrm{vz}$	Z38CNKHA
Gipsplatte	18.0	$16 / 45 \mathrm{NKHZ}$	KG 745 CNK geharzt	$\mathrm{N} 19, \mathrm{vz}$	Z44CNKHA
Gipsplatte	20.0	$16 / 45 \mathrm{NKHZ}$	KG 745 CNK geharzt	$\mathrm{N} 19, \mathrm{vz}$	Z44CNKHA
Gipsplatte	25.0	$16 / 50 \mathrm{NKHZ}$	KG 750 CNK geharzt	$\mathrm{N} 21, \mathrm{vz}$	Z50CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 5 zu finden.

Tabelle 17: Klammertypen zur Befestigung von einer nicht mittragenden bzw. aussteifenden Lage Gipsfaserplatten (Rigidur ${ }^{\circ}$) auf Holz-Unterkonstruktionen bei Decken

1. Lage	Dicke	Klammertypen 1. Lage			
		BEA	Haubold	Poppers-Senco	Prebena
Rigidur H	10.0	14/35 NKHZ	KG 735 CNK geharzt	N16, vz	Z35CNKHA
Rigidur H	12.5	14/35 NKHZ	KG 740 CNK geharzt	N16, vz	Z38CNKHA
Rigidur H	15.0	14/38 NKHZ	KG 740 CNK geharzt	N17, vz	Z44CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 5 zu finden.

[^18]Tabelle 18: Klammertypen zur Befestigung von einer nicht mittragenden bzw. aussteifenden 2. Lage
Gipsplatten durch eine 1. Lage Gipsplatten auf Holz-Unterkonstruktionen bei Decken

1. Lage	Dicke	2. Lage	Dicke	Klammertypen 2. Lage			
				BEA	Haubold	Poppers-Senco	Prebena
Gipsplatte	9.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N19, vz	Z50CNKHA
Gipsplatte	12.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	12.5	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	15.0	Gipsplatte	15.0	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	18.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Gipsplatte	18.0	Gipsplatte	12.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	18.0	Gipsplatte	15.0	16/60 NKHZ	KG 760 CNK geharzt	N23, vz	Z60CNKHA
Gipsplatte	18.0	Gipsplatte	18.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	20.0	Gipsplatte	9.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	20.0	Gipsplatte	12.5	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Gipsplatte	20.0	Gipsplatte	15.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	20.0	Gipsplatte	18.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z63CNKHA
Gipsplatte	20.0	Gipsplatte	20.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z63CNKHA
Gipsplatte	25.0	Gipsplatte	9.5	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	25.0	Gipsplatte	12.5	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Gipsplatte	25.0	Gipsplatte	15.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z67CNKHA
Gipsplatte	25.0	Gipsplatte	18.0	-	KG 770 CNK geharzt	-	Z67CNKHA
Gipsplatte	25.0	Gipsplatte	20.0	-	KG 770 CNK geharzt	-	Z75CNKHA
Gipsplatte	25.0	Gipsplatte	25.0	-	KG 775 CNK geharzt	-	Z75CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 6 zu finden.

Tabelle 19: Klammertypen zur Befestigung von einer nicht mittragenden bzw. aussteifenden 2. Lage Gips- oder Gipsfaserplatten durch eine 1. Lage Gipsfaserplatten auf Holz-Unterkonstruktionen bei Decken

1. Lage	Dicke	2. Lage	Dicke	Klammertypen \qquad 2. Lage			
				BEA	Haubold	Poppers-Senco	Prebena
Rigidur H	10.0	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N19, vz	Z44CNKHA
Rigidur H	12.5	Gipsplatte	9.5	16/45 NKHZ	KG 745 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	12.5	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	15.0	Gipsplatte	9.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z50CNKHA
Rigidur H	15.0	Gipsplatte	12.5	16/50 NKHZ	KG 750 CNK geharzt	N21, vz	Z55CNKHA
Rigidur H	15.0	Gipsplatte	15.0	16/60 NKHZ	KG 755 CNK geharzt	N23, vz	Z55CNKHA
Rigidur H	15.0	Gipsplatte	18.0	16/60 NKHZ	KG 760 CNK geharzt	N23, vz	Z60CNKHA
Rigidur H	15.0	Gipsplatte	20.0	16/60 NKHZ	KG 760 CNK geharzt	N25, vz	Z60CNKHA
Rigidur H	15.0	Gipsplatte	25.0	16/65 NKHZ	KG 765 CNK geharzt	N25, vz	Z64CNKHA
Rigidur H	10.0	Rigidur H	10.0	16/45 NKHZ	HD7955 CNK 1.83/50	N19, vz	Z44CNKHA
Rigidur H	12.5	Rigidur H	10.0	16/45 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	12.5	Rigidur H	12.5	16/50 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	15.0	Rigidur H	10.0	16/50 NKHZ	HD7955 CNK 1.83/55	N21, vz	Z50CNKHA
Rigidur H	15.0	Rigidur H	12.5	16/50 NKHZ	HD7955 CNK 1.83/60	N21, vz	Z55CNKHA
Rigidur H	15.0	Rigidur H	15.0	16/60 NKHZ	HD7955 CNK 1.83/60	N23, vz	Z55CNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 7 und Tabelle 8 zu finden.

[^19]
6.3 Klammerbefestigung Riduro ${ }^{\circ}$ Gips-/ Rigidur ${ }^{\oplus}$ H Gipsfaserplatten in Holz-Tragkonstruktionen - Wände (tragend)

Hinweis: Für diese Art der Verklammerung sind stets bauaufsichtlich zugelassene Klammern zu verwenden!
Tabelle 20: Klammertypen zur Befestigung aussteifender Beplankungen aus Riduro ${ }^{\circ}$ Gips- und Rigidur ${ }^{\circ}$ H Gipsfaserplatten 1. und 2. Beplankungslage

1. Lage	Dicke	Klammertypen nach EC 5 bzw. SIA 265 1. Lage			
		BEA	Haubold	Poppers-Senco	Prebena
Riduro	12.5	155/45 VZHZ	KG 745 CNK geharzt HD 7945 CNK geharzt	$\begin{aligned} & \text { N21BXBB } \\ & \text { Q21BXBB } \end{aligned}$	Z50CSVHA
Riduro	15.0	155/50 VZHZ	KG 750 CNK geharzt HD 7950 CNK geharzt	$\begin{aligned} & \text { N21BXBB } \\ & \text { Q21BXBB } \end{aligned}$	Z50CSVHA
Rigidur H	12.5	155/45 VZHZ	KG 745 CNK geharzt HD 7945 CNK geharzt	$\begin{aligned} & \mathrm{N} 21 \mathrm{BXBB} \\ & \mathrm{O} 21 \mathrm{BXBB} \end{aligned}$	Z50CSVHA
Rigidur H	15.0	155/50 VZHZ	KG 750 CNK geharzt HD 7950 CNK geharzt	$\begin{aligned} & \mathrm{N} 21 \mathrm{BXBB} \\ & \mathrm{Q} 21 \mathrm{BXBB} \\ & \hline \end{aligned}$	Z50CSVHA

6.4 Klammerbefestigung Rigips ${ }^{\circledR}$ Gips-/Gipsfaserplatten in Rigips ${ }^{\circ}$ Gips-/Gipsfaserplatten (nicht tragend)

Hinweis: Für diese Art der Verklammerung sind stets Spreizklammern zu verwenden!

Tabelle 21: Klammertypen zur Befestigung der 2. Beplankungslage aus Gips- oder
Gipsfaserplatten in die 1. Beplankungslage aus Riduro ${ }^{\circ}$ oder Rigidur ${ }^{\circ} \mathrm{H}$ bei nichttragenden Wänden

1. Lage	Dicke	Befestigung 1. Lage	2. Lage	Dicke	Klammertypen 2. Lage			
					BEA	Haubold	Poppers-Senco	Prebena
Rigidur H	10.0		Gipsplatte	9.5	155/18 NKHZ CD	KG 718 CDNK geharzt	N11LAB	Z19CDNKHA
Rigidur H	12.5		Gipsplatte	9.5	155/18 NKHZ CD	KG 718 CDNK geharzt	N11LAB	Z19CDNKHA
Rigidur H	12.5		Gipsplatte	12.5	155/21 NKHZ CD	KG 722 CDNK geharzt	N12LAB	Z22CDNKHA
Rigidur H	15.0		Gipsplatte	9.5	155/21 NKHZ CD	KG 722 CDNK geharzt	N12LAB	Z22CDNKHA
Rigidur H	15.0		Gipsplatte	12.5	155/25 NKHZ CD	KG 725 CDNK geharzt	N13LAB	Z22CDNKHA
Rigidur H	15.0		Gipsplatte	15.0	155/25 NKHZ CD	KG 728 CDNK geharzt	N14LAB	Z28CDNKHA
Rigidur H	15.0		Gipsplatte	18.0	-	KG 728 CDNK geharzt	N14LAB	Z28CDNKHA
Rigidur H	15.0		Gipsplatte	20.0	155/33 NKHZ CD	KG 730 CDNK geharzt	N15LAB	Z32CDNKHA
Rigidur H	15.0		Gipsplatte	25.0		KG 735 CDNK geharzt	N17LAB	Z38CDNKHA
Rigidur H	10.0		Rigidur H	10.0	155/18 NKHZ CD	KG 718 CDNK geharzt	N11LAB	Z19CDNKHA
Rigidur H	12.5		Rigidur H	10.0	155/21 NKHZ CD	KG 718 CDNK geharzt	N11LAB	Z19CDNKHA
Rigidur H	12.5		Rigidur H	12.5	155/21 NKHZ CD	KG 722 CDNK geharzt	N12LAB	Z22CDNKHA
Rigidur H	15.0		Rigidur H	10.0	155/21 NKHZ CD	KG 722 CDNK geharzt	N12LAB	Z22CDNKHA
Rigidur H	15.0		Rigidur H	12.5	155/25 NKHZ CD	KG 725 CDNK geharzt	N13LAB	Z22CDNKHA
Rigidur H	15.0		Rigidur H	15.0	155/25 NKHZ CD	KG 728 CDNK geharzt	N14LAB	Z28CDNKHA

Hinweise zur Klammerbefestigung sind in Tabelle 9 (Gipsplatten), Tabelle 10 (Rigidur ${ }^{\circ}$) oder Tabelle 11 (Estrichelemente) zu finden.

[^20]
7 Literaturhinweise

- DIN 1052 - Holzbauwerke - Entwurf, Berechnung und Bemessung von Holzbauwerken Hinweis: DIN 1052 wurde zurückgezogen und u.a. durch DIN EN 1995-1-1 ersetzt. DIN Deutsches Institut für Normung e.V.

■ DIN 1052-10 - Herstellung und Ausführung von Holzbauwerken - Teil 10: Ergänzende Bestimmungen DIN Deutsches Institut für Normung e.V.

■ DIN 4074-1 - Sortierung von Holz nach der Tragfähigkeit - Teil 1: Nadelschnittholz DIN Deutsches Institut für Normung e.V.

■ DIN 4103-1 - Nichttragende innere Trennwände - Teil 1: Anforderungen, Nachweise DIN Deutsches Institut für Normung e.V.

■ DIN 4149 - Bauten in deutschen Erdbebengebieten - Lastannahmen, Bemessung und Ausführung üblicher Hochbauten
DIN Deutsches Institut für Normung e.V.

- DIN 18181 - Gipsplatten im Hochbau - Verarbeitung

DIN Deutsches Institut für Normung e.V.

■ DIN 18182-1 - Zubehör für die Verarbeitung von Gipsplatten - Profile aus Stahlblech DIN Deutsches Institut für Normung e.V.

■ DIN 18182-2 - Zubehör für die Verarbeitung von Gipsplatten - Schnellbauschrauben, Klammern und Nägel DIN Deutsches Institut für Normung e.V.

■ DIN 18183-1 - Montagewände aus Gipskartonplatten - Ausführung von Metallständerwänden DIN Deutsches Institut für Normung e.V.

- DIN EN 338 - Bauholz für tragende Zwecke - Festigkeitsklassen DIN Deutsches Institut für Normung e.V.
- DIN EN 1912 - Bauholz für tragende Zwecke - Festigkeitsklassen - Zuordnung von visuellen Sortierklassen und Holzarten DIN Deutsches Institut für Normung e.V.

■ DIN EN 1995-1-1 - Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines: Allgemeine Regeln und Regeln für den Hochbau DIN Deutsches Institut für Normung e.V.

- SIA 260 - Grundlagen der Projektierung von Tragwerken SIA Schweizerischer Ingenieur und Architektenverein

[^21]- DIN EN 1995-1-1/NA - Nationaler Anhang - National festgelegte Parameter - Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines: Allgemeine Regeln und Regeln für den Hochbau DIN Deutsches Institut für Normung e.V.
- DIN EN 14195 - Metallprofile für Unterkonstruktionen von Gipsplattensystemen - Begriffe, Anforderungen und Prüfverfahren DIN Deutsches Institut für Normung e.V.
- DIN EN 14566 - Mechanische Befestigungsmittel für Gipsplattensysteme - Begriffe, Anforderungen, Prüfverfahren
DIN Deutsches Institut für Normung e.V.
- DIN EN 14592 - Holzbauwerke - Stiftförmige Verbindungsmittel - Anforderungen DIN Deutsches Institut für Normung e.V.

Räume zum Leben. Natürlich mit Rigips.

Sortimente
Albä
Vollgipsplattensysteme

Rigips'

Gips- und Gipsfaserplattensysteme

gypsum4 wood Lösungen
für den Holzbau
Trennwände, Vorsatzschalen, Bekleidungen

Trennwände, Vorsatzschalen, Bekleidungen

- Wärmeregulierende Beplankungen für Holz- und Metallständer

Decken- und Dachstockbekleidungen

- Metallprofile und Abhänger
- Wärmeregulierende Deckenbekleidungen

Kleber und Spachtel

Kleber
Fugenfüller, Spachtel und Weissputze
Maschinen, Werkzeuge und Geräte

Aussen- und Innenwände, Vorsatzschalen, Be-

kleidungen

- Aussteifende Beplankungen von
tragenden Holztafelelementen
- Trockenputze und Beplankungen für Holz- und Metallunterkonstruktionen

Decken- und Dachstockbekleidungen

Metallprofile und Abhänger

- Deckenbekleidungen

Böden

- Trockenestriche

Kleber und Spachtel

- Kleber

Fugenfüller, Spachtel und Weissputze

- Maschinen, Werkzeuge und Geräte

Rigips Lösungen

für den Innenausbau

Trennwände, Vorsatzschalen, Bekleidungen

- Freistehende Vollgipswände
- Metallständerprofile
- Beplankungen
- Wärmeregulierende Beplankungen für Metallständer

Decken- und Dachstockbekleidungen

- Metallprofile und Abhänger
- Deckenbekleidungen
- Wärmeregulierende Deckenbekleidungen

Kleber und Spachtel

- Kleber

- Fugenfüller, Spachtel und Weissputze
- Maschinen, Werkzeuge und Geräte

Trennwände, Vorsatzschalen, Bekleidungen

- Metallständerprofile
- Trockenputze und Beplankungen
- Spezialsysteme für den Brand-, Schall-,

Strahlen- und Einbruchschutz
Einbaugläser für Trockenbauwände

Decken- und Dachstockbekleidungen

- Metallprofile und Abhänger
- Deckenbekleidungen
- Akustikdecken

Böden

- Trockenestriche

Kleber und Spachtel

Kleber

- Fugenfüller, Spachtel und Weissputze
- Maschinen, Werkzeuge und Geräte

Rigips'

Spezialsysteme

Rigips Service inklusive:

■ Beratung \quad Aus- und Weiterbildung

- Ausschreibung, Kalkulation, Materialauszüge

Logistik RiCycling ${ }^{\text {® }}$

Raumkonstruktionen

- Unterkonstruktionen und Beplankungen
für Wände und Decken mit grossen Höhen
und Spannweiten
- Raum-in-Raum-System (freistehend)

Formteile

- Deckenkuppeln
- Brüstungen und Bekleidungen

[^0]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auftechnische Beratungen.

[^1]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^2]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften ode unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^3]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^4]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften ode unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auftechnische Beratungen.

[^5]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^6]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^7]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^8]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^9]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^10]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^11]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^12]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^13]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^14]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^15]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^16]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auftechnische Beratungen.

[^17]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^18]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^19]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^20]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

[^21]: Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch Allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

