

Bemessungstabellen für Holzständerwände mit statisch wirksamer Beplankung aus Riduro[®] Gipsund Rigidur[®] H Gipsfaserplatten

Technik & Verarbeitung 3/16

Bemessungstabellen für Holzständerwände mit statisch wirksamer Beplankung aus Riduro[®] Gips- und Rigidur[®] H Gipsfaserplatten

Mit gypsum4wood bietet Rigips Bemessungsgrundlagen auf der Basis von ETA-Zulassungen (Europäische Technische Zulassung). Riduro Gips-beziehungsweise Rigidur H Gipsfaserplatten können als aussteifende Beplankung im konstruktiven Holzbau eingesetzt werden. Wie sich diese für die Lastfälle Wind und Erdbeben auf die längenbezogene Beanspruchbarkeit bzw. den Schubfluss auswirken, wird im vorliegenden "Technik & Verarbeitung – Bemessungstabellen für Holzständerwände mit Riduro Gips- und Rigidur H Gipsfaserplatten" aufgezeigt.

Die Erstellung vorliegender Bemessungstabellen erfolgte durch das Ingenieurbüro Lauber Ingenieure AG. Es wurden Holzständerwände mit horizontaler Scheibenbeanspruchung unter Berücksichtigung der Tragfähigkeit der Verbindungsmittel sowie der Plattenfestigkeit und des Beulverhaltens der Beplankung bemessen. Zum einen nach dem Vorgehen der SIA 265, zum andern nach DIN EN 1991-1-1/NA:2010-12 (EC5).

Für eine individuelle Beratung und zur Unterstützung Ihrer Planungs- und Ausführungsarbeiten stehen Ihnen unsere Aussendienstmitarbeiter und Techniker gerne zur Verfügung.

Ihren Ansprechpartner finden Sie unter www.gypsum4wood.ch

Inhalt

1	Allgemeines	5
1.1	Grundlagen	5
1.2	Wände mit aussteifender Beplankung der Rigips AG	5
1.3	Erdbebensicherheit	5
1.4	Statisch wirksame Bauplatten	6
2	Bemessungstabellen	8
2.1	Bemessungswerte für Rigidur [®] H nach SIA	8
2.1.1	Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SIA 265 und 265/1	8
2.1.2	Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	9
2.1.3	Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	10
2.1.4	Schubwiderstand der Beplankung nach SIA 265	11
2.1.5	Beulnachweis der Beplankung nach SIA 265	11
2.1.6	Scheibentragfähigkeit von mit Rigidur [®] H beplankten Wänden nach SIA 265 und 265/1 und DIN EN 1995-1-1/NA:2010-12	12
2.2	Bemessungswerte für Rigidur [®] H nach Eurocode	13
2.2.1	Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SN EN 1995-1-1	13
2.2.2	Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	14
2.2.3	Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	15
2.2.4	Schubwiderstand der Beplankung nach SN EN 1995-1	16
2.2.5	Beulnachweis der Beplankung nach SN EN 1995-1-1	16
2.2.6	Scheibentragfähigkeit von mit Rigidur [®] H beplankten Wänden nach SN EN 1995-1-1 und DIN EN 1995-1-1/NA:2010-12	17
2.3	Bemessungswerte für Riduro® nach SIA	18
2.3.1	Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SIA 265 und 265/1	18
2.3.2	Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	19
2.3.3	Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	20
2.3.4	Schubwiderstand der Beplankung nach SIA 265	21
2.3.5	Beulnachweis der Beplankung nach SIA 265	21

2.3.6	Scheibentragfähigkeit von mit Riduro [®] beplankten Wänden nach SIA 265 und 265/1 und	
	DIN EN 1995-1-1/NA:2010-12	22
2.4	Bemessungswerte für Riduro [®] nach Eurocode	23
2.4.1	Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach	
	SN EN 1995-1-1	23
2.4.2	Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	24
2.4.3	Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12	25
2.4.4	Schubwiderstand der Beplankung nach SN EN 1995-1	26
2.4.5	Beulnachweis der Beplankung nach SN EN 1995-1-1	26
2.4.6	Scheibentragfähigkeit von mit Riduro [®] beplankten Wänden nach SN EN 1995-1-1 und	
	DIN EN 1995-1-1/NA:2010-12	27

1 Allgemeines

1.1 Grundlagen

Vorliegender Nachweis von Holzständerwänden mit einer Beplankung aus Riduro Gips- oder Rigidur H Gipsfaserplatten der Rigips AG dient Tragwerksplanern und Ausführenden zur Wahl statisch geeigneter Wandscheiben. Mit den Tabellen soll eine möglichst wirtschaftliche Bemessung der Bauteile ermöglicht werden. Für die Bemessung der tabellarisierten Werte wurde die Verbindung der Beplankung durch ein Verbindungsmittel mit der Unterkonstruktion, die Schubfestigkeit der Beplankung und das Beulverhalten der Beplankung berücksichtigt. Die angegebenen Werte stehen in Abhängigkeit zu:

- ein- oder beidseitiger Beplankung
- dem gewählten Verbindungsmittelabstand a_v (50 / 75 / 100 / 125 / 150)
- den gewählten Verbindungsmitteln (Klammer Ø 1.53 mm, Klammer Ø 1.8 mm)
- den Teilsicherheits- und Modifikationsbeiwerten
- dem gewählten Plattenwerkstoff und der zugehörigen Nenndicke

1.2 Wände mit aussteifender Beplankung der Rigips AG

Als tragende, aussteifende Konstruktionen werden raumabschliessende Bauteile bezeichnet, welche neben dem Eigengewicht, den Anprall- und Konsollasten zusätzlich durch Kräfte aus anderen Bauteilen oder Einwirkungen belastet werden und diese Kräfte entsprechend aufnehmen können.

Die Aufnahme von vertikalen Lasten erfolgt im Wesentlichen über die tragenden Elemente der Bauteile, wie z. B. Holzständer oder Holzbalken. Unter Umständen kann eine entsprechende Beplankung als mitwirkend angesetzt werden.

Die Ableitung der horizontal auf das Bauteil einwirkenden Kräfte erfolgt durch den Verbund von Unterkonstruktion, Beplankung und Befestigungsmittel.

Insbesondere bei scheibenartiger Beanspruchung des Bauteils wird die aussteifende Wirkung erst durch den Verbund einer stabilen Beplankung mit der Unterkonstruktion und den Befestigungsmitteln erreicht. Der statische Nachweis solcher Wand- und Deckenscheiben im Holzbau erfolgt nach der DIN EN 1995-1-1/NA:2010-12 und nach der SIA 265 für die Schweiz.

Auf Grund der regelmässigen Überarbeitung der nationalen Bemessungsnormen und Zulassungen sind die Werte auf ihre Aktualität zu überprüfen. Detaillierte Informationen sind der aktuellen Norm in der jeweils gültigen Fassung sowie den Europäischen Technischen Zulassungen für Riduro[®] Gips- ETA 16/0657 und Rigidur[®] H Gipsfaserplatten (ETA 08/0147) zu entnehmen.

Für die Verklammerung bei tragenden Wandkonstruktionen sind bauaufsichtlich zugelassene Verbindungsmittel gemäss DIN EN 1995-1-1 oder gemäss DIN 1052-10 zu verwenden.

1.3 Erdbebensicherheit

Bei der statischen Bemessung von Bauwerken in erdbebengefährdeten Gebieten müssen Wand- und Deckenscheiben noch zusätzliche, planmässige Lasten aus dynamischer Schwingung aufnehmen können. Holzrahmenbauwände und Decken sind sehr geeignete Bauweisen für das Bauen in Erdbebengebieten. Sie besitzen ein gutes elastisches und plastisches Verformungspotential, gerade in Verbindung mit metallischen Befestigungsmitteln. Der Nachweis für den Einsatz von Riduro[®] Gipsplatten und Rigidur[®] H Gipsfaserplatten unter dynamischer Beanspruchung ist durch Versuche und ein entsprechendes Gutachten der VHT Darmstadt erbracht.

1.4 Statisch wirksame Bauplatten

Gem	Gemäss ETA-08/0147 für Rigidur [®] H 12.5 mm 15 mm							
	i		Biegung	$f_{m,0,k}$	N/mm²	5,5	5,0	
nng		parallel	Elastizitätsmodul	E _{m,0,mean}	N/mm²	4'500	4'500	
Plattenbeanspruchung		para	Schub	$f_{\rm v,0,k}$	N/mm²	1,2	1,2	
ıspr	11		Schubmodul	$G_{0,mean}$	N/mm²	650	650	
bear	1	<u>:</u>	Biegung	f _{m,90,k}	N/mm²	5,5	5,0	
ten		rechtwinklig	Elastizitätsmodul	E _{m,90,mean}	N/mm²	4'500	4'500	
Plat		chtv	Schub	$f_{\rm v,90,k}$	N/mm²	1,2	1,2	
	Т.	re	Schubmodul	G _{90,mean}	N/mm²	650	650	
	↓		Schub	$f_{v,0,k}$	N/mm²	2,3	2,3	
	/	parallel	Schubmodul	$G_{0,mean}$	N/mm²	1'300	1'200	
		par	Biegung	$f_{m,0,k}$	N/mm²	4,5	4,3	
			Elastizitätsmodul (Biegung) $E_{c,0,mean}$ N/mi		N/mm²	3'500	3'500	
b0	<u> </u>	rechtwinklig	Schub	f _{v,90,k}	N/mm²	2,3	2,3	
Scheibenbeanspruchung			Schubmodul	$G_{90,mean}$	N/mm²	1'300	1'200	
ruck		chtv	Biegung	$f_{m,90,k}$	N/mm²	4,5	4,3	
nsp	<u></u>	re	Elastizitätsmodul (Biegung	g) E _{c,90,mean}	N/mm²	3.500	3.500	
nbea	- 4-7		Zug	$f_{\rm t,0,k}$	N/mm²	2,2	2,0	
ibei		parallel	Elastizitätsmodul (Zug)	$E_{\rm t,0,mean}$	N/mm²	4'500	2'500	
Sche		par	Druck	f _{c,0,k}	N/mm²	9,0	7,0	
			Elastizitätsmodul (Druck)	$E_{\rm c,0,mean}$	N/mm²	4'500	3'000	
	- **	<u>=</u>	Zug	$f_{\rm t,0,k}$	N/mm²	2,2	2,0	
		rechtwinklig	Elastizitätsmodul (Zug)	$E_{\rm t,0,mean}$	N/mm²	4'500	2'500	
		chtv	Druck	f _{c,0,k}	N/mm²	9,0	7,0	
		re	Elastizitätsmodul (Druck)	$E_{\rm c,0,mean}$	N/mm²	4'500	3'000	
Roho	lichte		ρ_k	kg/m³	ca. 1'	200		
Loch	leibungsfestigkeit (d = D	urch	messer Verbindungsmittel)	$f_{h,k}$	N/mm²	127 (d ^{-0.7}	

Klasse der Lasteinwirkungsdauer KLED	Nutzungsklasse 1	Nutzungsklasse 2
Modifikationsbeiwerte k_{mod}		
Ständig	0.20	0.15
Lang	0.40	0.30
Mittel	0.60	0.45
Kurz	0.80	0.60
Sehr kurz	1.10	0.80
Verformungsbeiwerte k_{def}	3	4

Gem	Gemäss ETA 16/0657 für Riduro° 12.5 mm 15 mm							
hung		parallel	Biegung	$f_{m,0,k}$	N/mm²	8,4	7,0	
Ispruc			Elastizitätsmodul	E _{m,0,mean}	N/mm²	4'650	5'000	
Plattenbeanspruchung		echtwinklig	Biegung	f _{m,90,k}	N/mm²	4,9	5,4	
Platte	L	rechtv	Elastizitätsmodul	E _{m,90,mean}	N/mm²	3'850	4'300	
	Ţ		Biegung	$f_{m,0,k}$	N/mm²	5,9	4,9	
		parallel	Elastizitätsmodul	$E_{\rm m,0,mean}$	N/mm²	3'700	3'000	
		par	Schub	$f_{v,0,k}$	N/mm²	3,3	2,7	
_	Ш		Schubmodul	G _{0,mean}	N/mm²	2'500	2'000	
		rechtwinklig	Biegung	$f_{m,0,k}$	N/mm²	3,9	3,2	
gur			Elastizitätsmodul	$E_{\rm m,0,mean}$	N/mm²	4'300	3'500	
nchı.			Schub	$f_{v,0,k}$	N/mm²	3,3	2,7	
ınspr			Schubmodul	G _{0,mean}	N/mm²	2'500	2'000	
Scheibenbeanspruchung	_	parallel	Zug	$f_{t,0,k}$	N/mm²	2,4	2,1	
leibe			Elastizitätsmodul	E _{t,0,mean}	N/mm²	5'800	2'600	
Sch		para	Druck	$f_{c,0,k}$	N/mm²	6,5	6,5	
			Elastizitätsmodul	E _{c,0,mean}	N/mm²	5'000	2'300	
	_	ig	Zug	$f_{t,45,k}^{1}$	N/mm²	2,15	1,67	
		vinkl	Elastizitätsmodul	E _{t,45,mean}	N/mm²	9'000	6'000	
		rechtwinklig	Druck	f _{c,90,k}	N/mm²	6,5	7,2	
		re	Elastizitätsmodul	E _{c,90,mean}	N/mm²	5'200	1'300	
Rohdichte $ ho_k$					kg/m³	ca. 1	'000	
Loch	Lochleibungsfestigkeit (d = Durchmesser Verbindungsmittel) $f_{h,k}$ N/mm ² 39 d ^{-0.65} 41,5 d ^{-0.6}							

Klasse der Lasteinwirkungsdauer KLED	Nutzungsklasse 1	Nutzungsklasse 2
Modifikationsbeiwerte k_{mod}		
Ständig	0.20	0.15
Lang	0.40	0.30
Mittel	0.60	0.45
Kurz	0.80	0.60
Sehr kurz	1.10	0.80
Verformungsbeiwerte k_{def}	3	4

 $^{^{\}rm 1}$ Für den Schubfestigkeitsnachweis werden die Zugfestigkeitswerte bei 45° eingesetzt.

Die Angaben in dieser Druckschrift basieren auf unseren derzeitigen technischen Kenntnissen und Erfahrungen sowie auf den entsprechenden EN-Normen der neuesten gültigen Fassungen, Nachweisen durch allgemeine bauaufsichtliche Prüfzeugnisse. Technische Veränderungen von EN-Normen, Baustoffen und ihren Eigenschaften oder unserer Systeme können eine teilweise oder komplette Neubewertung des Sachverhaltes notwendig werden lassen. Die hier abgedruckten Angaben befreien den Verwender wegen der Fülle möglicher Einflüsse bei der Verarbeitung und Anwendung unserer Produkte nicht von eigenen Prüfungen und Versuchen und stellen nur allgemeine Richtlinien dar. Eine rechtlich verbindliche Zusicherung bestimmter Eigenschaften oder der Eignung für einen konkreten Einsatzzweck kann hieraus nicht abgeleitet werden. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen sind vom Verwender stets in eigener Verantwortung zu beachten. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns vor. Weiterhin verweisen wir auf die allgemeinen Geschäftsbedingungen der Rigips AG in Bezug auf technische Beratungen.

2 Bemessungstabellen

Die Tabellenwerte dienen als Bemessungshilfe. Die Rigips AG bestätigt die Richtigkeit der berechneten Tabellenwerte, übernimmt jedoch keine Haftung für deren Anwendung.

2.1 Bemessungswerte für Rigidur® H nach SIA

2.1.1 Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SIA 265 und 265/1

 $R_d = min \{ \eta_w * \eta_t * 110 * d^{1.7} * 1.5 ; 2/3 * \eta_{mod} / \gamma_m * f_{h,k} * d^*t \}$

SIA 265/1 Gl. 20, 21, 24

d = Durchmesser

1.5 = Faktor zur Berücksichtigung Winkel zwischen Klammerrücken und Faserrichtung Holz α≥ 30°

 η_{w} = Beiwert zur Erfassung des Einflusses der Holzfeuchte

 η_t = Beiwert zur Berücksichtigung der Dauer der Einwirkung

fett = massgebend

$\eta_{t,\text{EB}}$	1.4			SIA 265 2.2.6
$\eta_{t,Wind}$	1			SIA 265 2.2.6
$\eta_{\text{ w, FK I}}$	1	η _{w, FK II}	0.8	SIA 265 3.2.1.3
$\eta_{\text{ mod, EB, NK I}}$	1.1	η mod, EB, NK II	0.8	ETA Rigips
$\eta_{\text{ mod, WL, NK I}}$	0.8	η mod, WL, NK II	0.6	ETA Rigips
Υm	1.3			ETA Rigips

Lastfall Erdhehen

Lastfall Erdbeben									
Rippenabstand 625 mm									
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstand a _v					
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm	
		1	12.5	9.5	6.3	4.8	3.8	3.2	
	Klammer	1	15	9.5	6.3	4.8	3.8	3.2	
	d = 1.53 mm	2	12.5	7.6	5.1	3.8	3.0	2.5	
_::.:.		2	15	7.6	5.1	3.8	3.0	2.5	
einseitig	Klammer d = 1.8 mm	1	12.5	12.5	8.4	6.3	5.0	4.2	
			15	12.5	8.4	6.3	5.0	4.2	
		d = 1.8 mm	2	12.5	10.0	6.7	5.0	4.0	3.3
		۷	15	10.0	6.7	5.0	4.0	3.3	
		1	12.5	19.0	12.7	9.5	7.6	6.3	
	Klammer		15	19.0	12.7	9.5	7.6	6.3	
	d = 1.53 mm	2	12.5	15.2	10.2	7.6	6.1	5.1	
		2	15	15.2	10.2	7.6	6.1	5.1	
zweiseitig		1	12.5	25.1	16.7	12.5	10.0	8.4	
	Klammer	1	15	25.1	16.7	12.5	10.0	8.4	
	d = 1.8 mm	2	12.5	20.1	13.4	10.0	8.0	6.7	
		2	15	20.1	13.4	10.0	8.0	6.7	

Lastfall Wind

Rippenabstand 625 mm								
Beplankung	Beplankung Verbindungs- mittel		lutzungs- Platten- lasse dicke] für Abstand	d a _v		
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	6.8	4.5	3.4	2.7	2.3
	Klammer		15	6.8	4.5	3.4	2.7	2.3
	d = 1.53 mm	2	12.5	5.4	3.6	2.7	2.2	1.8
einseitig			15	5.4	3.6	2.7	2.2	1.8
Ciriscitig	Klammer d = 1.8 mm	1	12.5	9.0	6.0	4.5	3.6	3.0
			15	9.0	6.0	4.5	3.6	3.0
		2	12.5	7.2	4.8	3.6	2.9	2.4
		2	15	7.2	4.8	3.6	2.9	2.4
		1	12.5	13.6	9.1	6.8	5.4	4.5
	Klammer		15	13.6	9.1	6.8	5.4	4.5
	d = 1.53 mm	2	12.5	10.9	7.3	5.4	4.4	3.6
zweiseitig		۷	15	10.9	7.3	5.4	4.4	3.6
Zvvciscitig		1	12.5	17.9	12.0	9.0	7.2	6.0
	Klammer	Т	15	17.9	12.0	9.0	7.2	6.0
	d = 1.8 mm	2	12.5	14.3	9.6	7.2	5.7	4.8
			15	14.3	9.6	7.2	5.7	4.8

2.1.2 Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1} * k_{v2} * k_{mod} / \gamma_M * f_{v,k} * t$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

ETA Rigips

 $(statt \ f_{v,k} \ wird \ f_{t,k} = 2.2 \ N/mm^2 \ f\"{u}r \ Rigidur^{\circ} \ H \ 12.5 \ und \ f_{t,k} = 2.0 \ N/mm^2 \ f\"{u}r \ Rigidur^{\circ} \ H \ 15 \ angesetzt)$

 k_{mod} Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 $\gamma_M = 1.3$ Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 $k_{\text{mod, EB, NK I}}$ 1.1 $k_{\text{mod, EB, NK II}}$ 0.8

ETA Rigips

 $k_{\text{mod, WL,NK I}}$ 0.8 $k_{\text{mod, WL,NK II}}$ 0.6 ETA Rigips

Rippenabstand 625 mm							
Beplankung			Rd [kN/m] Erdbeben	Rd [kN/m] Wind			
	4	12.5	7.7	5.6			
_::	1	15	8.4	6.1			
einseitig	2	12.5	5.6	4.2			
		15	6.1	4.6			
	1	12.5	23.3	16.9			
:		15	25.4	18.5			
zweiseitig	2	12.5	16.9	12.7			
		15	18.5	13.8			

2.1.3 Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* 35 * t^2 / b_r$

für $t < b_r/35$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t Plattendicke

 $f_{v,k} = 2.3 \text{ N/mm}^2 \text{ charakteristische Schubfestigkeit}$

ETA Rigips

 k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M =1.3 Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 b_r = Rippenabstand

k_{mod, WL,NKI}

 $k_{\text{mod, EB, NK I}}$ 1.1

0.8

 $k_{\text{mod, EB, NK II}} \quad 0.8$

k_{mod, WL,NK II} 0.6

ETA Rigips

ETA Rigips

Rippenabstand b _r 625 mm							
Beplankung	Nutzungs- klasse	Platten- Rd [kN/m] dicke Erdbeben [mm]		Rd [kN/m] Wind			
	1	12.5	5.6	4.1			
_::		15	8.1	5.9			
einseitig	2	12.5	4.1	3.1			
		15	5.9	4.4			
	1	12.5	17.0	12.4			
:		15	24.5	17.8			
zweiseitig	2	12.5	12.4	9.3			
		15	17.8	13.4			

2.1.4 Schubwiderstand der Beplankung nach SIA 265

 $R_d = \eta_{mod} / \gamma_M * f_{v,k} * t_{ges}$ SIA 265/1 GI. 14

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit ETA Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.2 N/mm² für Rigidur[®] H 12.5 und $f_{t,k}$ = 2.0 N/mm² für Rigidur[®] H 15 angesetzt)

 η_{mod} = Beiwert zur Erfassung des Einflusses der Dauer der Einwirkung und der Holzfeuchte

 γ_{M} = 1.3 Widerstandsbeiwert

 $k_{\text{mod, EB, NK I}}$ 1.1 $k_{\text{mod, EB, NK II}}$ 0.8 $k_{\text{mod, WL, NK II}}$ 0.6

ETA Rigips ETA Rigips

Rippenabstand 625 mm								
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind				
	2	12.5	23.3	16.9				
,.		15	25.4	18.5				
einseitig		12.5	16.9	12.7				
		15	18.5	13.8				
	1	12.5	46.5	33.8				
,.		15	50.8	36.9				
zweiseitig	2	12.5	33.8	25.4				
		15	36.9	27.7				

2.1.5 Beulnachweis der Beplankung nach SIA 265

SIA 265 Ziffer 5.4.2.6

Bei Beplankungen mit einer Dicke von t ≥ b/100 ist kein Schubbeulnachweis erforderlich.

 $12.5 \ge 565/100 = 5.65$ erfüllt $15 \ge 565/100 = 5.65$ erfüllt

2.1.6 Scheibentragfähigkeit von mit Rigidur[®] H beplankten Wänden nach SIA 265 und 265/1 und DIN EN 1995-1-1/NA:2010-12

Minimum aus Verbindungsmittel-, Schub- und Beultragfähigkeit der Beplankung

Lastfall Erdbeben

Rippenabstar	nd 625 mm							
Beplankung	Verbindungs-	Nutzungs-	Plattendicke	Rd [kN/n	n] für Abstar	nd a _v		
	mittel	klasse	[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	5.6	5.6	4.8	3.8	3.2
	Klammer		15	8.1	6.3	4.8	3.8	3.2
	d = 1.53 mm	2	12.5	4.1	4.1	3.8	3.0	2.5
einseitig			15	5.9	5.1	3.8	3.0	2.5
	Klammer d = 1.8 mm	1	12.5	5.6	5.6	5.6	5.0	4.2
			15	8.1	8.1	6.3	5.0	4.2
		2	12.5	4.1	4.1	4.1	4.0	3.3
			15	5.9	5.9	5.0	4.0	3.3
		1	12.5	17.0	12.7	9.5	7.6	6.3
	Klammer		15	19.0	12.7	9.5	7.6	6.3
	d = 1.53 mm	2	12.5	12.4	10.2	7.6	6.1	5.1
zweiseitig		2	15	15.2	10.2	7.6	6.1	5.1
Zwciscitig		1	12.5	17.0	16.7	12.5	10.0	8.4
	Klammer d = 1.8 mm	Τ.	15	24.5	16.7	12.5	10.0	8.4
		2	12.5	12.4	12.4	10.0	8.0	6.7
		۷	15	17.8	13.4	10.0	8.0	6.7

Lastfall Wind

Lastfall Wind										
Rippenabstar	nd 625 mm									
Beplankung	Verbindungs-	Nutzungs-	Plattendicke	Rd [kN/m	n] für Abstan	d a _v				
	mittel	klasse	[mm]	50 mm	75 mm	100 mm	125 mm	150 mm		
		1	12.5	4.1	4.1	3.4	2.7	2.3		
ŀ	Klammer		15	5.9	4.5	3.4	2.7	2.3		
	d = 1.53 mm	2	12.5	3.1	3.1	2.7	2.2	1.8		
einseitig			15	4.4	3.6	2.7	2.2	1.8		
emsering	Klammer d = 1.8 mm	1	12.5	4.1	4.1	4.1	3.6	3.0		
			15	5.9	5.9	4.5	3.6	3.0		
		nm 2	12.5	3.1	3.1	3.1	2.9	2.4		
			15	4.4	4.4	3.6	2.9	2.4		
		1	12.5	12.4	9.1	6.8	5.4	4.5		
	Klammer		15	13.6	9.1	6.8	5.4	4.5		
	d = 1.53 mm	2	12.5	9.3	7.3	5.4	4.4	3.6		
zweiseitig			15	10.9	7.3	5.4	4.4	3.6		
ZWCISCILIS		1	12.5	12.4	12.0	9.0	7.2	6.0		
	Klammer	1	15	17.8	12.0	9.0	7.2	6.0		
	d = 1.8 mm	2	12.5	9.3	9.3	7.2	5.7	4.8		
		۷	15	13.4	9.6	7.2	5.7	4.8		

Tragfähigkeit der Verbindungsmittel nach SIA 265 und 265/1 massgebend Beulen nach DIN EN 1995-1-1/NA: 2010-12 massgebend

2.2 Bemessungswerte für Rigidur® H nach Eurocode

2.2.1 Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SN EN 1995-1-1

 $R_d = R_k * k_{mod} / \gamma_M$ SN EN 1995-1-1:2004 Ziffer 2.4.3 (Gl. 2.17)

R_k= charakteristischer Wert des Abscherwiderstands (Versagensfall (f) massgebend)

 $R_k = 1.15^* \sqrt{(2^*\beta/(1+\beta))^*} \sqrt{(2^*M_{y,Rk} * f_{h,1,k} * d)} + F_{ax,Rk}/4$

SN EN 1995-1-1:2004 Ziffer 8.2.2 (Gl. 8.6 (f))

 $\beta = f_{h,2,k}/f_{h,1,k}$

f_{h,i,k} = charakteristische Lochleibungsfestigkeit im Holzteil i

M_{y,Rk} = charakteristisches Fliessmoment des Verbindungsmittels

d = Durchmesser des Verbindungsmittels

Versagensmechanismus

F_{ax,Rk}= charakteristischer Ausziehwiderstand des Verbindungsmittels nicht bekannt, daher wird der Anteil der Seilwirkung an der Tragfähigkeit zu Null angenommen

 k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M = Teilsicherheitsbeiwert für eine Baustoffeigenschaft

k mod, EB, NK I	1.1	k _{mod, EB, NK II} 0.8	ETA Rigips
k mod, WL, NK I	0.8	k _{mod, WL, NK II} 0.6	ETA Rigips
Y m	1.3		ETA Rigips

Lastfall Erdbeben

Rippenabstar	nd 625 mm							
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstan	d a _v		
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	5.8	3.9	2.9	2.3	1.9
	Klammer	1	15	5.8	3.9	2.9	2.3	1.9
	d = 1.53 mm	2	12.5	4.2	2.8	2.1	1.7	1.4
_::::-			15	4.2	2.8	2.1	1.7	1.4
einseitig	Klammer d = 1.8 mm	1	12.5	7.5	5.0	3.8	3.0	2.5
			15	7.5	5.0	3.8	3.0	2.5
		2	12.5	5.5	3.6	2.7	2.2	1.8
			15	5.5	3.6	2.7	2.2	1.8
		1	12.5	11.6	7.7	5.8	4.6	3.9
	Klammer	1	15	11.6	7.7	5.8	4.6	3.9
	d = 1.53 mm	2	12.5	8.4	5.6	4.2	3.4	2.8
		2	15	8.4	5.6	4.2	3.4	2.8
zweiseitig		1	12.5	15.0	10.0	7.5	6.0	5.0
	Klammer	1	15	15.0	10.0	7.5	6.0	5.0
	d = 1.8 mm	2	12.5	10.9	7.3	5.5	4.4	3.6
		2	15	10.9	7.3	5.5	4.4	3.6

Lastfall Wind

Rippenabsta	nd 625 mm							
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Plattendicke [mm]	Rd [kN/m 50 mm] für Abstan 75 mm	d a _v 100 mm	125 mm	150 mm
			12.5	4.2	2.8	2.1	1.7	1.4
	Klammer	1	15	4.2	2.8	2.1	1.7	1.4
	d = 1.53 mm	2	12.5	3.2	2.1	1.6	1.3	1.1
.::		2	15	3.2	2.1	1.6	1.3	1.1
einseitig	Klammer d = 1.8 mm	1	12.5	5.5	3.6	2.7	2.2	1.8
			15	5.5	3.6	2.7	2.2	1.8
		n 2	12.5	4.1	2.7	2.0	1.6	1.4
			15	4.1	2.7	2.0	1.6	1.4
		1	12.5	8.4	5.6	4.2	3.4	2.8
	Klammer	1	15	8.4	5.6	4.2	3.4	2.8
	d = 1.53 mm	2	12.5	6.3	4.2	3.2	2.5	2.1
:		2	15	6.3	4.2	3.2	2.5	2.1
zweiseitig		1	12.5	10.9	7.3	5.5	4.4	3.6
	Klammer	1	15	10.9	7.3	5.5	4.4	3.6
	d = 1.8 mm	2	12.5	8.2	5.5	4.1	3.3	2.7
		2	15	8.2	5.5	4.1	3.3	2.7

2.2.2 Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* t$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

ETA Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.2 N/mm² für Rigidur H 12.5 und $f_{t,k}$ = 2.0 N/mm² für Rigidur H 15 angesetzt)

k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 $\gamma_M = 1.3$ Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 $k_{\text{mod, EB, NK I}}$ 1.1 $k_{\text{mod, EB, NK II}}$ 0.8

ETA Rigips

k_{mod, WL,NKI} 0.8

k_{mod, WL,NK II} 0.6

ETA Rigips

Rippenabsta	nd 625 mm			
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind
	-	12.5	7.7	5.6
	1	15	8.4	6.1
einseitig	2	12.5	5.6	4.2
		15	6.1	4.6
	1	12.5	23.3	16.9
	1	15	25.4	18.5
zweiseitig		12.5	16.9	12.7
	2	15	18.5	13.8

2.2.3 Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* 35 * t^2 / b_r$

für $t < b_r/35$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k} = 2.3 \text{ N/mm}^2$ charakteristische Schubfestigkeit

ETA Rigips

 k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M =1.3 Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 b_r = Rippenabstand

k_{mod, EB, NK I} 1.1

 $k_{\text{mod, EB, NK II}} \hspace{0.1in} 0.8$

 $k_{\text{mod, WL,NK I}} \qquad 0.8 \qquad \qquad k_{\text{mod, WL,NK II}} \quad 0.6$

ETA Rigips

ETA Rigips

Rippenabstand b _r 625 mm									
Beplankung Nutzungs- klasse		Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind					
	1	12.5	5.6	4.1					
	1	15	8.1	5.9					
einseitig	2	12.5	4.1	3.1					
		15	5.9	4.4					
	1	12.5	17.0	12.4					
	1	15	24.5	17.8					
zweiseitig	2	12.5	12.4	9.3					
	2	15	17.8	13.4					

2.2.4 Schubwiderstand der Beplankung nach SN EN 1995-1

 $R_d = \eta_{mod} / \gamma_M * f_{v,k} * t_{ges}$

t = Plattendicke

f_{v,k} = charakteristische Schubfestigkeit

ETA Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.2 N/mm² für Rigidur® H 12.5 und $f_{t,k}$ = 2.0 N/mm² für Rigidur® H 15 angesetzt)

 η_{mod} = Beiwert zur Erfassung des Einflusses der Dauer der Einwirkung und der Holzfeuchte

 γ_{M} = 1.3 Widerstandsbeiwert ETA Rigips

ETA Rigips ETA Rigips

Rippenabsta	nd 625 mm			
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind
	1	12.5	23.3	16.9
::4:	1	15	25.4	18.5
einseitig	2	12.5	16.9	12.7
		15	18.5	13.8
	1	12.5	46.5	33.8
::	1	15	50.8	36.9
zweiseitig	2	12.5	33.8	25.4
		15	36.9	27.7

2.2.5 Beulnachweis der Beplankung nach SN EN 1995-1-1

Beulen infolge Schubbeanspruchung der Beplankung darf vernachlässigt werden, wenn:

 $b_{net}/t \le 100$ SN EN 1995-1-1:2004 Ziffer 9.2.4.1 (11)

 $565/12.5 = 45.2 \le 100$ erfüllt $565/15 = 37.7 \le 100$ erfüllt

2.2.6 Scheibentragfähigkeit von mit Rigidur[®] H beplankten Wänden nach SN EN 1995-1-1 und DIN EN 1995-1-1/NA:2010-12

Minimum aus Verbindungsmittel-, Schub- und Beultragfähigkeit der Beplankung

Lastfall Erdbeben

Rippenabstar	nd 625 mm				_			
Beplankung	Ver- bindungs-	Nutzungs- klasse	Plattendicke	Rd [kN/m]	für Abstand	a _v		
	mittel	Ridose	[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	5.6	3.9	2.9	2.3	1.9
	Klammer		15	5.8	3.9	2.9	2.3	1.9
	d = 1.53 mm	2	12.5	4.1	2.8	2.1	1.7	1.4
einseitig		2	15	4.2	2.8	2.1	1.7	1.4
Ciriscitig		1	12.5	5.6	5.0	3.8	3.0	2.5
	Klammer d = 1.8 mm		15	7.5	5.0	3.8	3.0	2.5
		2	12.5	4.1	3.6	2.7	2.2	1.8
		۷	15	5.5	3.6	2.7	2.2	1.8
		1	12.5	11.6	7.7	5.8	4.6	3.9
	Klammer		15	11.6	7.7	5.8	4.6	3.9
	d = 1.53 mm	2	12.5	8.4	5.6	4.2	3.4	2.8
zweiseitig		2	15	8.4	5.6	4.2	3.4	2.8
Zvvciscitig		1	12.5	15.0	10.0	7.5	6.0	5.0
	Klammer		15	15.0	10.0	7.5	6.0	5.0
	d = 1.8 mm	2	12.5	10.9	7.3	5.5	4.4	3.6
		2	15	10.9	7.3	5.5	4.4	3.6

Lastfall Wind

Rippenabstar								
Beplankung	Ver-	Nutzungs-	Plattendicke	Rd [kN/m]	für Abstand	a _v	,	
	bindungs- mittel	klasse	[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	4.1	2.8	2.1	1.7	1.4
	Klammer		15	4.2	2.8	2.1	1.7	1.4
	d = 1.53 mm	2	12.5	3.1	2.1	1.6	1.3	1.1
einseitig			15	3.2	2.1	1.6	1.3	1.1
	Klammer d = 1.8 mm	1	12.5	4.1	3.6	2.7	2.2	1.8
		ner	15	5.5	3.6	2.7	2.2	1.8
		= 1.8 mm 2	12.5	3.1	2.7	2.0	1.6	1.4
			15	4.1	2.7	2.0	1.6	1.4
		1	12.5	8.4	5.6	4.2	3.4	2.8
	Klammer		15	8.4	5.6	4.2	3.4	2.8
	d = 1.53 mm	2	12.5	6.3	4.2	3.2	2.5	2.1
zweiseitig			15	6.3	4.2	3.2	2.5	2.1
Zweiseitig		1	12.5	10.9	7.3	5.5	4.4	3.6
	Klammer		15	10.9	7.3	5.5	4.4	3.6
	d = 1.8 mm	8 mm 2	12.5	8.2	5.5	4.1	3.3	2.7
			15	8.2	5.5	4.1	3.3	2.7

Tragfähigkeit der Verbindungsmittel nach SN EN 1995-1-1 massgebend Beulen nach DIN EN 1995-1-1/NA: 2010-12 massgebend

2.3 Bemessungswerte für Riduro° nach SIA

2.3.1 Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SIA 265 und 265/1

 $R_{d} = min \left\{ \eta_{w}^{*} \eta_{t}^{*} 39^{*} d^{\text{-0.65}} * 1.5 ; 2/3^{*} \eta_{mod} / \gamma_{m}^{*} f_{h,k}^{*} d^{*} t \right\}$

SIA 265/1 Gl. 20, 21, 24

d = Durchmesser (41.5*d^{-0.6} für 15 mm Plattendicke)

1.5 Faktor zur Berücksichtigung Winkel zwischen Klammerrücken und Faserrichtung Holz α≥ 30°

 η_w = Beiwert zur Erfassung des Einflusses der Holzfeuchte

 η_t = Beiwert zur Berücksichtigung der Dauer der Einwirkung

fett = massgebend

$\eta_{t,EB}$	1.4		SIA 265 2.2.6
$\eta_{\text{t, Wind}}$	1		SIA 265 2.2.6
$\eta_{w,\text{FK I}}$	1	η _{w, FK II} 0.8	SIA 265 3.2.1.3
$\eta_{\text{ mod, EB, NK I}}$	1.1	$\eta_{\text{mod, EB, NK II}}$ 0.8	ETA Rigips
$\eta_{\text{ mod, WL, NK I}}$	0.8	$\eta_{\text{ mod, WL, NK II}}$ 0.6	ETA Rigips
γm	1.3		ETA Rigips

Lastfall Erdbeben

Lastrali Erddeben									
Rippenabsta	nd 625 mm								
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] 1	für Abstand a _v				
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm	
		1	12.5	6.4	4.3	3.2	2.6	2.1	
	Klammer	1	15	8.3	5.6	4.2	3.3	2.8	
	d = 1.53 mm	2	12.5	4.6	3.1	2.3	1.9	1.5	
oincoitia			15	6.1	4.0	3.0	2.4	2.0	
einseitig		1	12.5	6.8	4.5	3.4	2.7	2.3	
	Klammer	1	15	8.9	5.9	4.4	3.6	3.0	
	d = 1.8 mm	l = 1.8 mm 2	12.5	4.9	3.3	2.5	2.0	1.6	
			15	6.5	4.3	3.2	2.6	2.2	
		1	12.5	12.8	8.5	6.4	5.1	4.3	
	Klammer	1	15	16.7	11.1	8.3	6.7	5.6	
	d = 1.53 mm	2	12.5	9.3	6.2	4.6	3.7	3.1	
zwoje ojti g		۷	15	12.1	8.1	6.1	4.8	4.0	
zweiseitig		1	12.5	13.5	9.0	6.8	5.4	4.5	
	Klammer	1	15	17.8	11.8	8.9	7.1	5.9	
	d = 1.8 mm		12.5	9.8	6.6	4.9	3.9	3.3	
		2	15	12.9	8.6	6.5	5.2	4.3	

Lastfall Wind

Rippenabsta	and 625 mm							_		
Beplan- kung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] f	Rd [kN/m] für Abstand a _v					
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm		
		1	12.5	4.6	3.1	2.3	1.9	1.5		
	Klammer		15	6.1	4.0	3.0	2.4	2.0		
	d = 1.53 mm	2	12.5	3.5	2.3	1.7	1.4	1.2		
einseitig		2	15	4.5	3.0	2.3	1.8	1.5		
Ciriscitig	Klammer	1	12.5	4.9	3.3	2.5	2.0	1.6		
			15	6.5	4.3	3.2	2.6	2.2		
	d = 1.8 mm	2	12.5	3.7	2.5	1.8	1.5	1.2		
			15	4.8	3.2	2.4	1.9	1.6		
		1	12.5	9.3	6.2	4.6	3.7	3.1		
	Klammer		15	12.1	8.1	6.1	4.8	4.0		
	d = 1.53 mm	2	12.5	7.0	4.6	3.5	2.8	2.3		
zweiseitig			15	9.1	6.1	4.5	3.6	3.0		
ZWCISCICIE		1	12.5	9.8	6.6	4.9	3.9	3.3		
	Klammer		15	12.9	8.6	6.5	5.2	4.3		
	d = 1.8 mm	2	12.5	7.4	4.9	3.7	2.9	2.5		
			15	9.7	6.5	4.8	3.9	3.2		

2.3.2 Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1} * k_{v2} * k_{mod} / \gamma_M * f_{v,k} * t$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

Angaben Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.15 N/mm² für Riduro 12.5 und $f_{t,k}$ = 1.67 N/mm² für Riduro 15 angesetzt)

 k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

γ_M = 1.3 Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

1.1 k_{mod. EB. NK II} 0.8 k_{mod. EB. NK I}

ETA Rigips ETA Rigips

 $k_{\text{mod, WL,NK II}}$ 0.6 kmod, WL,NKI 0.8

Rippenabsta	and 625 mm			
Beplan- kung	Nutzungs- klasse	Platten- Rd [kN/m] dicke Erdbeben [mm]		Rd [kN/m] Wind
	1	12.5	7.5	5.5
-::4:	1	15	7.0	5.1
einseitig	2	12.5	5.5	4.1
	2	15	5.1	3.8
	1	12.5	22.7	16.5
	1	15	21.2	15.4
zweiseitig	2	12.5	16.5	12.4
	2	15	15.4	11.6

2.3.3 Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* 35 * t^2 / b_r$

für t<b_r/35

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

Angaben Rigips

 $f_{v,k}$ = 3.3 N/mm² für Riduro $^{\circ}$ 12.5 mm und 2.7 N/mm² für Riduro $^{\circ}$ 15 mm

k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M =1.3 Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 b_r = Rippenabstand

 ETA Rigips

ETA Rigips

Rippenabsta	nd b _r 625 mn	n		
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind
	4	12.5	8.1	5.9
-::	1	15	9.5	6.9
einseitig	2	12.5	5.9	4.4
		15	6.9	5.2
	4	12.5	24.4	17.8
	1	15	28.8	20.9
zweiseitig	2	12.5	17.8	13.3
	2	15	20.9	15.7

2.3.4 Schubwiderstand der Beplankung nach SIA 265

 $R_d = \eta_{mod} / \gamma_M * f_{v,k} * t_{ges}$ SIA 265/1 GI. 14

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit Angaben Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.15 N/mm² für Riduro 12.5 und $f_{t,k}$ = 1.67 N/mm² für Riduro 15 angesetzt)

 η_{mod} = Beiwert zur Erfassung des Einflusses der Dauer der Einwirkung und der Holzfeuchte

 γ_{M} = 1.3 Widerstandsbeiwert

ETA Rigips ETA Rigips

Rippenabstar	nd 625 mm			
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind
	1	12.5	22.7	16.5
	1	15	21.2	15.4
einseitig	2	12.5	16.5	12.4
		15	15.4	11.6
	4	12.5	45.5	33.1
	1	15	42.4	30.8
zweiseitig		12.5	33.1	24.8
	2	15	30.8	23.1

2.3.5 Beulnachweis der Beplankung nach SIA 265

Bei Beplankungen mit einer Dicke von t ≥ b/100 ist kein Schubbeulnachweis erforderlich. SIA 265 Ziffer 5.4.2.6

 $12.5 \ge 565/100 = 5.65$ erfüllt $15 \ge 565/100 = 5.65$ erfüllt

2.3.6 Scheibentragfähigkeit von mit Riduro° beplankten Wänden nach SIA 265 und 265/1 und DIN EN 1995-1-1/NA:2010-12

Minimum aus Verbindungsmittel-, Schub- und Beultragfähigkeit der Beplankung

Lastfall Erdbeben

Rippenabstand									
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstand a _v					
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm	
		1	12.5	6.4	4.3	3.2	2.6	2.1	
einseitig	Klammer		15	7.0	5.6	4.2	3.3	2.8	
	d = 1.53 mm	2	12.5	4.6	3.1	2.3	1.9	1.5	
			15	5.1	4.0	3.0	2.4	2.0	
		1	12.5	6.8	4.5	3.4	2.7	2.3	
	Klammer		15	7.0	5.9	4.4	3.6	3.0	
	d = 1.8 mm	2	12.5	4.9	3.3	2.5	2.0	1.6	
			15	5.1	4.3	3.2	2.6	2.2	
		1	12.5	12.8	8.5	6.4	5.1	4.3	
	Klammer	Т	15	16.7	11.1	8.3	6.7	5.6	
	d = 1.53 mm	2	12.5	9.3	6.2	4.6	3.7	3.1	
zweiseitig		<u>Z</u>	15	12.1	8.1	6.1	4.8	4.0	
20001301018		1	12.5	13.5	9.0	6.8	5.4	4.5	
	Klammer	1	15	17.8	11.8	8.9	7.1	5.9	
	d = 1.8 mm	2	12.5	9.8	6.6	4.9	3.9	3.3	
		~	15	12.9	8.6	6.5	5.2	4.3	

Lastfall Wind

Rippenabstand	625 mm								
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstand a _v					
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm	
		1	12.5	4.6	3.1	2.3	1.9	1.5	
einseitig	Klammer d = 1.53 mm	_	15	5.1	4.0	3.0	2.4	2.0	
		2	12.5	3.5	2.3	1.7	1.4	1.2	
		2	15	3.8	3.0	2.3	1.8	1.5	
		1	12.5	4.9	3.3	2.5	2.0	1.6	
	Klammer		15	5.1	4.3	3.2	2.6	2.2	
	d = 1.8 mm	2	12.5	3.7	2.5	1.8	1.5	1.2	
			15	3.8	3.2	2.4	1.9	1.6	
		1	12.5	9.3	6.2	4.6	3.7	3.1	
	Klammer	1	15	12.1	8.1	6.1	4.8	4.0	
	d = 1.53 mm	2	12.5	7.0	4.6	3.5	2.8	2.3	
zweiseitig			15	9.1	6.1	4.5	3.6	3.0	
20001301016		1	12.5	9.8	6.6	4.9	3.9	3.3	
	Klammer		15	12.9	8.6	6.5	5.2	4.3	
	d = 1.8 mm	2	12.5	7.4	4.9	3.7	2.9	2.5	
			15	9.7	6.5	4.8	3.9	3.2	

Tragfähigkeit der Verbindungsmittel nach SIA 265 und 265/1 massgebend Schubwiderstand nach DIN EN 1995-1-1/NA: 2010-12 (Zugfestigkeit bei 45°) massgebend

2.4 Bemessungswerte für Riduro° nach Eurocode

2.4.1 Tragfähigkeit metallischer, stiftförmiger Verbindungsmittel auf Abscheren nach SN EN 1995-1-1

 $R_d = R_k * k_{mod} / \gamma_M$

SN EN 1995-1-1:2004 Ziffer 2.4.3 (Gl. 2.17)

 R_k = charakteristischer Wert des Abscherwiderstands (normalerweise Versagensfall (d) massgebend)

 $R_k = 1.05^*(f_{h,1,k}^*t_1^*d)/(2+\beta)^*(\sqrt{(2^*\beta^*(1+\beta)+(4^*\beta^*(2+\beta)^*M_{y,Rk})/(f_{h,1,k}^*d^*t_1^2))}-\beta) + F_{ax,Rk}/4$

SN EN 1995-1-1:2004 Ziffer 8.2.2 (Gl. 8.6 (d))

 $\beta = f_{h,2,k}/f_{h,1,k}$

f_{h,i,k} = charakteristische Lochleibungsfestigkeit im Holzteil i

M_{y,Rk} = charakteristisches Fliessmoment des Verbindungsmittels

d = Durchmesser des Verbindungsmittels

Versagensmechanismus

F_{ax,Rk} = charakteristischer Ausziehwiderstand des Verbindungsmittels,

nicht bekannt, daher wird der Anteil der Seilwirkung an der Tragfähigkeit zu Null angenommen

k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M = Teilsicherheitsbeiwert für eine Baustoffeigenschaft

Lastfall Erdbeben

Rippenabsta	and 625 mm							
Beplan- kung	Verbin- dungs-	Nutzungs- klasse	Platten- dicke	Rd [kN/m] fü	r Abstand a _v			
	mittel		[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	4.2	2.8	2.1	1.7	1.4
	Klammer	1	15	4.9	3.3	2.4	2.0	1.6
	d = 1.53 mm	2	12.5	3.0	2.0	1.5	1.2	1.0
-::4:-		2	15	3.5	2.4	1.8	1.4	1.2
einseitig	Klammer d = 1.8 mm	1	12.5	4.9	3.3	2.4	2.0	1.6
			15	5.7	3.8	2.8	2.3	1.9
		2	12.5	3.5	2.4	1.8	1.4	1.2
			15	4.1	2.8	2.1	1.7	1.4
		1	12.5	8.4	5.6	4.2	3.3	2.8
	Klammer	1	15	9.8	6.5	4.9	3.9	3.3
	d = 1.53 mm	2	12.5	6.1	4.1	3.0	2.4	2.0
		2	15	7.1	4.7	3.5	2.8	2.4
zweiseitig		1	12.5	9.8	6.5	4.9	3.9	3.3
	Klammer	т	15	11.4	7.6	5.7	4.5	3.8
	d = 1.8 mm	2	12.5	7.1	4.7	3.5	2.8	2.4
		۷.	15	8.3	5.5	4.1	3.3	2.8

Versagensfall (f) massgebend

Lastfall Wind

Rippenabstar	nd 625 mm							
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstand a _v				
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	3.0	2.0	1.5	1.2	1.0
	Klammer		15	3.5	2.4	1.8	1.4	1.2
	d = 1.53 mm	2	12.5	2.3	1.5	1.1	0.9	0.8
einseitig		2	15	2.7	1.8	1.3	1.1	0.9
Ciriscitig	Klammer d = 1.8 mm	1	12.5	3.5	2.4	1.8	1.4	1.2
			15	4.1	2.8	2.1	1.7	1.4
		2	12.5	2.7	1.8	1.3	1.1	0.9
			15	3.1	2.1	1.5	1.2	1.0
		1	12.5	6.1	4.1	3.0	2.4	2.0
	Klammer		15	7.1	4.7	3.5	2.8	2.4
	d = 1.53 mm	2	12.5	4.6	3.0	2.3	1.8	1.5
zweiseitig		2	15	5.3	3.5	2.7	2.1	1.8
Zweiseitig		1	12.5	7.1	4.7	3.5	2.8	2.4
	Klammer		15	8.3	5.5	4.1	3.3	2.8
	d = 1.8 mm	2	12.5	5.3	3.5	2.7	2.1	1.8
			15	6.2	4.1	3.1	2.5	2.1

2.4.2 Schubwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* t$

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

Angaben Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.15 N/mm² für Riduro 12.5 und $f_{t,k}$ = 1.67 N/mm² für Riduro 15 angesetzt)

k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 $\gamma_M = 1.3$ Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

 $k_{\text{mod, EB, NK}}$ 1.1 $k_{\text{mod, EB, NK}}$ 0.8

 $k_{\text{mod, WL,NK I}}$ 0.8 $k_{\text{mod, WL,NK II}}$ 0.6

ETA Rigips ETA Rigips

Rippenabstan	d 625 mm			
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind
	1	12.5	7.5	5.5
einseitig		15	7.0	5.1
Ciriscitig	2	12.5	5.5	4.1
		15	5.1	3.8
	1	12.5	22.7	16.5
zweiseitig		15	21.2	15.4
Zweiseitig	2	12.5	16.5	12.4
	2	15	15.4	11.6

2.4.3 Beulwiderstand der Beplankung nach DIN EN 1995-1-1/NA:2010-12

 $R_d = k_{v1}^* k_{v2}^* k_{mod} / \gamma_M * f_{v,k}^* 35 * t^2 / b_r$

für t<b_r/35

DIN EN 1995-1-1/NA:2010-12 (NA.16)

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit

Angaben Rigips

 $f_{v,k}$ = 3.3 N/mm² für Riduro 12.5 mm und 2.7 N/mm² für Riduro 15 mm

k_{mod} = Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt

 γ_M =1.3 Teilsicherheitsbeiwert für eine Baustoffeigenschaft

ETA Rigips

 k_{v1} = Beiwert zur Berücksichtigung der Anordnung der Verbindungsart der Platten

 k_{v2} = Beiwert zur Berücksichtigung der ein- oder zweiseitigen Anordnung der Platten

b_r = Rippenabstand

ETA Rigips

ETA Rigips

Rippenabstand b, 625 mm								
Beplankung	Nutzungs- klasse	Platten- dicke [mm]	Rd [kN/m] Erdbeben	Rd [kN/m] Wind				
	4	12.5	8.1	5.9				
-::	1	15	9.5	6.9				
einseitig	2	12.5	5.9	4.4				
		15	6.9	5.2				
	1	12.5	24.4	17.8				
:	1	15	28.8	20.9				
zweiseitig	_	12.5	17.8	13.3				
	2	15	20.9	15.7				

2.4.4 Schubwiderstand der Beplankung nach SN EN 1995-1

 $R_d = \eta_{mod} / \gamma_M * f_{v,k} * t_{ges}$

t = Plattendicke

 $f_{v,k}$ = charakteristische Schubfestigkeit Angaben Rigips

(statt $f_{v,k}$ wird $f_{t,k}$ = 2.15 N/mm² für Riduro 12.5 und $f_{t,k}$ = 1.67 N/mm² für Riduro 15 angesetzt)

 η_{mod} = Beiwert zur Erfassung des Einflusses der Dauer der Einwirkung und der Holzfeuchte

 γ_{M} = 1.3 Widerstandsbeiwert

 $k_{\text{mod, EB, NK I}}$ 1.1 $k_{\text{mod, EB, NK II}}$ 0.8 ETA Rigips $k_{\text{mod, WL,NK II}}$ 0.8 $k_{\text{mod, WL,NK II}}$ 0.6

Rippenabstand 625 mm Platten-Rd [kN/m] Rd[kN/m]Beplankung Nutzungsklasse dicke Erdbeben Wind [mm] 12.5 22.7 16.5 1 15 21.2 15.4 einseitig 12.5 16.5 12.4 2 15 15.4 11.6 12.5 45.5 33.1 1 15 42.4 30.8 zweiseitig 12.5 33.1 24.8 2 15 30.8 23.1

2.4.5 Beulnachweis der Beplankung nach SN EN 1995-1-1

Beulen infolge Schubbeanspruchung der Beplankung darf vernachlässigt werden, wenn

 $b_{net}/t \le 100$ SN EN 1995-1-1:2004 Ziffer 9.2.4.1 (11)

 $565/12.5 = 45.2 \le 100$ erfüllt $565/15 = 37.7 \le 100$ erfüllt

2.4.6 Scheibentragfähigkeit von mit Riduro° beplankten Wänden nach SN EN 1995-1-1 und DIN EN 1995-1-1/NA:2010-12

Minimum aus Verbindungsmittel-, Schub- und Beultragfähigkeit der Beplankung

Lastfall Erdbeben

Rippenabstan								
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstaı	nd a _v		
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm
		1	12.5	4.2	2.8	2.1	1.7	1.4
einseitig	Klammer	1	15	4.9	3.3	2.4	2.0	1.6
	d = 1.53 mm	2	12.5	3.0	2.0	1.5	1.2	1.0
			15	3.5	2.4	1.8	1.4	1.2
	Klammer d = 1.8 mm	1	12.5	4.9	3.3	2.4	2.0	1.6
			15	5.7	3.8	2.8	2.3	1.9
		2	12.5	3.5	2.4	1.8	1.4	1.2
			15	4.1	2.8	2.1	1.7	1.4
		1	12.5	8.4	5.6	4.2	3.3	2.8
	Klammer	1	15	9.8	6.5	4.9	3.9	3.3
	d = 1.53 mm	2	12.5	6.1	4.1	3.0	2.4	2.0
zweiseitig		2	15	7.1	4.7	3.5	2.8	2.4
Zweiseitig		1	12.5	9.8	6.5	4.9	3.9	3.3
	Klammer	1	15	11.4	7.6	5.7	4.5	3.8
	d = 1.8 mm	2	12.5	7.1	4.7	3.5	2.8	2.4
		2	15	8.3	5.5	4.1	3.3	2.8

Lastfall Wind

Lastfall Wind									
Rippenabstand	d 625 mm								
Beplankung	Verbindungs- mittel	Nutzungs- klasse	Platten- dicke	Rd [kN/m] für Abstaı	nd a _v			
			[mm]	50 mm	75 mm	100 mm	125 mm	150 mm	
		1	12.5	3.0	2.0	1.5	1.2	1.0	
	Klammer		15	3.5	2.4	1.8	1.4	1.2	
	d = 1.53 mm	2	12.5	2.3	1.5	1.1	0.9	0.8	
einseitig			15	2.7	1.8	1.3	1.1	0.9	
Ciriscitig	Klammer d = 1.8 mm	1	12.5	3.5	2.4	1.8	1.4	1.2	
			15	4.1	2.8	2.1	1.7	1.4	
		2	12.5	2.7	1.8	1.3	1.1	0.9	
			15	3.1	2.1	1.5	1.2	1.0	
		1	12.5	6.1	4.1	3.0	2.4	2.0	
	Klammer		15	7.1	4.7	3.5	2.8	2.4	
	d = 1.53 mm	2	12.5	4.6	3.0	2.3	1.8	1.5	
zweiseitig			15	5.3	3.5	2.7	2.1	1.8	
20001301018		1	12.5	7.1	4.7	3.5	2.8	2.4	
	Klammer		15	8.3	5.5	4.1	3.3	2.8	
	d = 1.8 mm	2	12.5	5.3	3.5	2.7	2.1	1.8	
		2	15	6.2	4.1	3.1	2.5	2.1	

Tragfähigkeit der Verbindungsmittel nach SN EN 1995-1-1 massgebend

Räume zum Leben. Natürlich mit Rigips.

Sortimente	gypsum4wood Lösungen für den Holzbau	Rigips Lösungen für den Innenausbau
Alba' Vollgipsplattensysteme	Trennwände, Vorsatzschalen, Bekleidungen ■ Wärmeregulierende Beplankungen für Holz- und Metallständer	Trennwände, Vorsatzschalen, Bekleidungen Freistehende Vollgipswände Metallständerprofile Beplankungen Wärmeregulierende Beplankungen für Metallständer
	Decken- und Dachstockbekleidungen ■ Metallprofile und Abhänger ■ Wärmeregulierende Deckenbekleidungen	 Decken- und Dachstockbekleidungen Metallprofile und Abhänger Deckenbekleidungen Wärmeregulierende Deckenbekleidungen
	Kleber und Spachtel Kleber Fugenfüller, Spachtel und Weissputze Maschinen, Werkzeuge und Geräte	Kleber und Spachtel Kleber Fugenfüller, Spachtel und Weissputze Maschinen, Werkzeuge und Geräte
Rigips* Gips- und Gipsfaser- plattensysteme	Aussen- und Innenwände, Vorsatzschalen, Bekleidungen Aussteifende Beplankungen von tragenden Holztafelelementen Trockenputze und Beplankungen für Holz- und Metallunterkonstruktionen	Trennwände, Vorsatzschalen, Bekleidungen Metallständerprofile Trockenputze und Beplankungen Spezialsysteme für den Brand-, Schall-, Strahlen- und Einbruchschutz Einbaugläser für Trockenbauwände
	Decken- und Dachstockbekleidungen ■ Metallprofile und Abhänger ■ Deckenbekleidungen	Decken- und Dachstockbekleidungen Metallprofile und Abhänger Deckenbekleidungen Akustikdecken
	Böden ■ Trockenestriche	Böden ■ Trockenestriche
	 Kleber und Spachtel Kleber Fugenfüller, Spachtel und Weissputze Maschinen, Werkzeuge und Geräte 	Kleber und Spachtel Kleber Fugenfüller, Spachtel und Weissputze Maschinen, Werkzeuge und Geräte
Rigips* Spezialsysteme und Vorfertigung		Raumkonstruktionen Unterkonstruktionen und Beplankungen für Wände und Decken mit grossen Höhen und Spannweiten Raum-in-Raum-System (freistehend)
		Formteile Deckenkuppeln Brüstungen und Bekleidungen

Rigips Service inklusive:

- Beratung Aus- und Weiterbildung
- Ausschreibung, Kalkulation, Materialauszüge
- Logistik RiCycling®

